Outstanding Young Chemist Award 2021

WMaser styowsols Webiscas

Date: Thursday, 19 May 2022 Time: 3 PM - 4 PM MYT Mode: Virtual

Registration bit.ly/oycawsw

Assoc Prof ChM Dr Ng Eng Poh

School of Chemical Sciences
Universiti Sains Malaysia

IKM Outstanding Young Chemist

 Award 2021 Winner (Academic)
Green Synthesis Strategies and Advances
 in Nanosized Zeolites

Nanosized zeolites have been fascinating the world of science during the last two decades due to their unique properties. The reduction of zeolite size from micrometer to nanometer scale leads to substantial changes in their properties and thus it is expected to provide materials with completely new properties. This presentation will give a vivid look on the use of various techniques for synthesis of zeolite nanocrystals with controlled size, stability, morphology and possibility for increased crystalline yield and scale up processes. Green strategies for preparation of zeolites including direct transformation of natural sources into synthetic zeolites, templatefree low temperature synthesis, seeded growth, multi-step, microwave-assisted, ultrasonic-assisted and ionothermal synthesis approaches will be presented. Besides, the new developments in zeolite synthesis are expected to broaden their applications in the fields of green and fine chemicals, medicine, pharmaceutical and food industry and nanotechnology.

Outstanding Young Chemist Award 2021

W1Nneer Styowselse
Webinsas

Registration

emycn_ikm
f(0) emycn.ikm

Ts ChM Dr Khalisanni bin Khalid
Malaysian Agricultural Research and Development Institute (MARDI)

IKM Outstanding Young Chemist Award 2021 Winner (Industry)

The effects of phenolate and its substituted ions on cationic micellar growth involving different alkyl substituted phenolate salts, MX and CTABr micelles in aqueous system were determined with the interest of investigating the relationship of ion-exchange constant to the micellar aggregation behavior. By the use of psedophase micellar model, the value of micellar binding constant, (K_{S}) of PSa- or PS- was determined in the absence and presence of inert salt. The non-linear least squares calculated value of $\mathrm{K}_{S}{ }^{0}$ (K_{S} in the absence of inert salt) was found to be $6748 \pm 435 \mathrm{M}^{-1}$. This is the first study which describes the use of PSa- as a probe The use of $\mathrm{R}_{x} \mathrm{Br}$ refers to the relative binding ${ }^{\prime}$. a reference (denominator value is the binding a reference (denominator value is the binding constant of spherical micelles) and Kx is refers to ion been considered as a reference counterion to determine binding constant of other counterions, the catalytic

 $[P S-]=0.2 \mathrm{mM},[\mathrm{NaOH}]=30 \mathrm{mM},[\mathrm{Pip}]=100 \mathrm{mM}$ at different [CTABr]. The results revealed that the values of $[\mathrm{CTABr}]_{T}=[\mathrm{NaX}]=0(\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$. The investigation of the effects of substituted phenolate ions on cationic micellar $[\mathrm{CTABr}]_{\mathrm{T}}=[\mathrm{NaX}]=0(\mathrm{X}=\mathrm{Br}, \mathrm{Cl})$. The investigation of the effects of substituted phenolate ions on cationic micellar
 ethyl sodium phenolate (3 -ethyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}$), 4-ethyl sodium phenolate (4-ethyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}$), 2-propyl sodium phenolate (2-propyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}$, 4-propyl sodium phenolate (4-propyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}$), 3 -isopropyl sodium phenolate (3 -isopropyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}$) and 4-isopropyl sodium phenolate (4-isopropyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}$) at $[\mathrm{PS}$ - $]=0.2$
$\mathrm{mM},[\mathrm{NaOH}]=30 \mathrm{mM},[\mathrm{Pip}]=100 \mathrm{mM}[\mathrm{CTABr}]=6,10$ and 15 mM respectively at $35^{\circ} \mathrm{C}$. The Re Bralues of $\mathrm{mM},[\mathrm{NaOH}]=30 \mathrm{mM},[\mathrm{Pip}]=100 \mathrm{mM},[\mathrm{CTABr}]=6,10$ and 15 mM respectively at $35^{\circ} \mathrm{C}$. The $\mathrm{Rx}^{\mathrm{Br}}$ values of counterions were $6.3,24.0,24.4,32.3,66.3,145.9,60.8$ and 66.6 for phenolate ions $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right)$, 2-ethy phenolate ions (2-etyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$), 3-ethyl phenolate ions (3-ethyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$), 4-ethyl phenolate ions (4-ethy $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$), 2-propyl phenolate ions (2-propyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$), 4-propyl phenolate ions (4-propyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}$), 3-isopropyl phenolate ions (3-isopropyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$) and 4 -isopropyl phenolate ions (4-isopropyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$) respectively. By means of the correlation between R_{x} br values and rheological analysis with the evident of microscopic studies at [CTABr] $=15 \mathrm{mM}$, the microstructures of micellar selt assembly of flexible nanoparticles were found as follows for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}=$spherical, 2-ethyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$spherical, 3 -ethyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$spherical, 4-ethyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$
wormlike, 2-propyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$vesicle, 4-propyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$rodlike, 3 -isopropyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$vesicle and 4 -isopropyl $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}=$wormlike. The findings revealed the increase of $\mathrm{R}_{x} \mathrm{Br}$ values lead to the changes of spherical micelles to wormlike, rodlike or vesicles micelles.

Outstanding Young Chemist Award 2021
WMoner Sthowsoce
Webinsas
Thursday, 19 May 2022 | 3PM-4 PM MYT I Virtual

a

emyen_ikm

