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Highly fluorescent salicylaldehyde-bound Schiff base-capped zinc sulphide nanoparticles were
synthesised by treating the Schiff base, N-Hexadecylsalicylideneamine (L?), with a solution
containing zinc salt and a reducing agent. The synthesised Schiff base-capped zinc sulphide
nanoparticles (L'@ZnS NPs) were characterised by ultraviolet-visible (UV-Vis) absorption
spectroscopy, photoluminescence (PL) spectroscopy, and transmission electron microscopy
(TEM). The L'@ZnS NPs were found to be a selective and sensitive fluorescent probe for the
determination of ferric [Fe (I11)] ions. The fluorescent sensor displayed a linear response in the
range from 0.149 puM to 1.47 uM, with the limit of detection (LOD) and limit of quantification

(LOQ) of 0.093 uM and 0.282 uM, respectively.
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The most prevalent transition metal ion in cellular
systems is iron(l11), which is vital for many biological
functions, including oxygen transport in haemoglobin
[1], cellular metabolism [2], catalysis, and serving as
a co-factor in enzyme-mediated reactions [3-8]. An
imbalance of iron, either deficiency or excess, can
impair cellular function and lead to various diseases,
such as Parkinson’s disease [9], Huntington’s disease
[10-11], renal impairment [12—15], Alzheimer's disease
[16-18], anaemia [19-20], cancer [10, 21-22], diabetes
[10, 23], liver disorders [24-25], heart failure, and
arthritis [6,10]. Consequently, the detection and
quantification of Fe(lll) are crucial for the early
identification of these diseases.

Various methods have been used for the
determination of iron, like voltammetry [26],
potentiometry [27], flame atomic absorption
spectrometry (FAAS), atomic absorption spectrometry
[28], inductively coupled plasma mass spectroscopy
(ICPMS) [29], and inductively coupled plasma atomic
emission spectrometry (ICP-AES) [28, 30]. Among
these analytical approaches, fluorescence signal
analysis has emerged as an effective method because
of its advantages, which include ease of use [31],
high sensitivity [32], real-time monitoring, affordability,
and rapid detection and quantification of metal
ions [30].

At the forefront of materials science research,
nanoparticles are becoming more and more ingrained
in our daily lives [33]. Increased surface to volume ratio
[34], enhanced activity, superior anti-photobleaching
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qualities, and tuneable emission characteristics of
nanomaterials have attracted significant interest for
use in chemical sensors [35]. Band gap energy is
essential for comprehending the electrical and optical
properties of materials. At nanoscale, any change in
the band gap of a nanoparticle has a direct impact on
the properties of the material [36]. Hence, band gap
energy must be considered in nanomaterial science
and technology [37]. With a broad band gap of roughly
3.72 eV to 3.78 eV, zinc sulphide nanoparticles
(ZnS NPs), a prospective low-toxicity semiconductor
material, exhibit exceptional optical and electrical
capabilities [38—-41]. Due to these characteristics,
ZnS NPs represent a promising candidate for the
development of novel sensors.

Capping agents are vital stabilisers that hinder
the aggregation of nanoparticles during their colloidal
synthesis. These surface functionalising agents
determine the properties of the nanoparticles [42].
The role of Schiff base as a stabilising agent,
particularly for ZnS NPs, remains underexplored and
scarcely reported. The incorporation of Schiff base
can facilitate the regulation of morphology, structure,
and luminescent and optical properties [43].

Here, we report a novel fluorescent probe,
L'@ZnS NPs, for the determination of Fe(lll) ions.
The developed sensor was observed to be stable for
approximately 30 minutes. Upon adding Fe(l1l) ions,
a noticeable gquenching of the fluorescence of the
fluorophore was shown, and the probe exhibited a
remarkable linear range.
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Scheme 1. Synthesis of L.

EXPERIMENTAL
Chemicals and Materials

Methanol, hexadecylamine, salicylaldehyde, zinc
acetate dihydrate, sodium sulphide nonahydrate,
manganese(ll) chloride tetrahydrate, nickel(Il) chloride
hexahydrate, aluminium chloride, copper(Il) chloride
hexahydrate, lead acetate monohydrate, magnesium
chloride hexahydrate, ferric chloride hexahydrate,
cobalt(l1) chloride hexahydrate, mercuric acetate,
and ferrous chloride tetrahydrate purchased were of
analytical grade and used without further purification.

Characterisation Method

The Proton Nuclear Magnetic Resonance (*H NMR)
spectrum of L' was obtained on a Bruker Avance IlI
HD 500 spectrometer. The high-resolution mass
spectrum (HRMS) of L* was obtained using a Thermo
scientific Q exactive mass spectrometer employing
electron spray ionisation (ESI) technique. The electronic
and PL spectra were recorded on Shimadzu UV-3600
UV-VIS-NIR and Horiba Fluorolog3 FL-1057 model
spectrometers, respectively. TEM images were
recorded using a JEM- 2100 HRTEM.

Synthesis of L*

The synthesis of L* has been reported previously in
the literature [44]. 5 mmol of hexadecylamine dissolved
in 5 mL of methanol was added dropwise to 5 mL
of methanolic solution containing 5 mmol of
salicylaldehyde. The resulting yellow coloured solution
was refluxed at 100°C under constant stirring for 1 hour
(Scheme 1). The solution was then allowed to cool
to room temperature and subsequently poured into
ice. The resulting yellow precipitate was filtered and
recrystallised using ethanol. The recrystallised product
was then dried over anhydrous calcium chloride.

Synthesis of L'@ZnS NPs

The L'@ZnS NPs were synthesised following a
synthetic route published earlier with minor
modifications [45]. 25 mL of 0.25 M Na»S.9H,0
and 25 mL of 0.25 M zinc acetate were dissolved in
Milli-Q water in separate beakers. These solutions
were stirred for 30 minutes. 0.01 mmol of the L* was

dissolved in 10 mL of methanol and added to the zinc
salt solution. The sodium sulphide solution was added
dropwise to the reaction mixture after 30 minutes. The
beaker was kept aside for another 30 minutes. The
synthesised L'@ZnS NPs were subjected to multiple
rounds of centrifugation at 10,000 revolutions per
minute for purification, after which the resulting
particles were redispersed in Millipore water.

Preparation of Fe(l11) Solution

A stock solution of ferric chloride with a concentration
of 1 mM was prepared in Milli-Q water. This stock
solution was then further diluted to obtain Fe(l11)
solutions of different concentrations.

Analytical Procedure

2 mL of the prepared L!@ZnS NPs solution was taken
and a suitable amount of Fe(lll) solution was added.
The intensity of fluorescence emission was then
measured. lo and I denote the emission intensity of
the probe before and after the addition of Fe(lll),
respectively. All measurements were carried out at
~pH 6.7 and ambient temperature.

RESULTS AND DISCUSSION
Characterisation of L1!

The synthesised L' was characterised by mass
spectrometry and 'H NMR spectroscopy. The
examination of the ESI-HRMS spectrum of L!, as
shown in Figure 1, reveals that the observed mass-to-
charge ratio (m/z) value of [M+H]* for Ca3H3sNO
(346.3120) is in strong agreement with the calculated
value (346.3110). The *H NMR spectrum of L was
recorded with CDCIl3 as solvent and is depicted in
Figure 2. The singlet peak at & 8.32 ppm corresponds
to the azomethine (—CH=N-) proton. The aromatic
protons resonate in the region of 7.33-6.85 ppm and
appear as a multiplet. A triplet in the upfield region
around 0.89-0.86 ppm indicates the terminal methyl
group. The methylene protons adjacent to azomethine
nitrogen (~CH>-N=C-) give rise to a triplet in the
region 3.62-3.59 ppm [46]. The remaining methylene
protons appear as multiplets in the region of 1.70-
1.25 ppm. The spectral investigations confirmed the
formation of L1,



98 Meera Jacob and Jaya T. Varkey Novel Salicylaldehyde-Bound Schiff Base-Capped
Zinc Sulphide Nanoparticles as a Highly Selective
and Sensitive Fluorescent Sensor for Ferric lons

346.31201

80 \

/7
7 N> (CH,)1s
70
OH

Relative Abundance
(5]
&

T T T T T T T
150 200 250 300 350 400 450 500 550 600 650 700 750
miz

Figure 1. HR-MS spectrum of L.
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Figure 2. *'H NMR spectrum of L.
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Characterisation of L'@ZnS NPs

Characterisation of the synthesised L'@ZnS NPs was
carried out through UV-Vis absorption spectroscopy,
fluorescence spectroscopy, and TEM. The absorption
spectrum of the L!@ZnS NPs exhibits an absorption
maximum centred around 340 nm (Figure 3).
The emission spectrum of the L'@ZnS NPs was
centred at 419 nm (Figure 4). The surface morphology
of the prepared L'@ZnS NPs was analysed using
TEM. The TEM image (Figure 5(a)) reveals that
the ZnS NPs are nearly spherical shape, with an
average size of approximately 30 nm. The lattice
fringes are visible in the high-resolution TEM
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(HRTEM) image (Figure 5(b)) and the selected area
electron diffraction (SAED) pattern (inset in Figure
5(b)) suggests the polycrystalline structure of the
prepared nanoparticles.

Fluorescence Quenching of L'@ZnS NPs by
Fe(I1D)

The L*@ZnS NPs showed a fluorescence emission
at 416 nm when excited at 350 nm. A significant
decrease in the emission intensity was observed upon
the addition of Fe(l1) (Figure 6). As the concentration
of Fe(lll) increased, the fluorescence intensity of the
probe continued to decline.
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Figure 3. Absorption spectrum of L'@ZnS NPs.
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Figure 4. Fluorescence emission spectrum of L'*@ZnS NPs.
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Figure 5. (@) TEM and (b) HRTEM (inset: SAED) images of L'!@ZnS NPs.
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Figure 6. Fluorescence spectra of L'@ZnS NPs before and after the addition of 1.18 uM Fe(ll1).
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Figure 7. Influence of time on the emission intensity of (a) L'1@ZnS NPs, (b) L'@ZnS NPs + 0.596 uM
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Effect of Time

By measuring the intensity of the proposed assay
at regular intervals before and after the addition
of different concentrations of Fe(lll), the impact of
time on the intensity of emission of L!@ZnS NPs —
Fe(l11) was examined (Figure 7). It is clear from
the results that the reaction between L'@ZnS NPs
and Fe(ll1) took place instantly and the intensity of
photoluminescence dropped to a minimum immediately.
The intensity of the fluorophore remains almost
constant for about 30 minutes.

Sensitivity Study

The emission intensity of the L!@ZnS NPs decreased
steadily with increasing concentrations of Fe(lll)
(Figure 8). The relationship between the intensity
of L'@ZnS NPs and the concentration of Fe(l1l)
is explained by the Stern-Volmer equation and the
calibration curve, i.e., the plot of the relative intensity
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Figure 8.
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of fluorescence (lo/l) as a function of concentration
of Fe(lll), was found to be linear within the range
from 0.149 pM to 1.47 pM (Figure 9). The LOD
and LOQ calculated were found to be of 0.093 uM
and 0.282 pM, respectively. The dependence of
concentration (C) on the relative intensity of
emission (lo/l) follows the equation:

lo/ 1 =0.488141C +0.9634 | R2= 0.9964

The relative standard deviation (RSD) of
1.5% from six repeated measurements (L‘@2ZnS
NPs + 1.47 uM of Fe(l11)) indicates the high
reproducibility of the developed method. The
performance of the proposed fluorescent sensor
was evaluated in comparison to previously reported
Fe(l1l) sensors (Table 1). The analysis of the results
reveals that the developed sensor demonstrates
performance superior to that of existing sensors in
regard to linear range and LOD.

T T T
0.0 0.4 0.8 1.2 1.6

Concentration (uM)

(a) Fluorescence spectra of LY @ZnS NPs in the presence of Fe(III) at concentrations of (i) 0 uM, (ii)
0.149 uM, (iii) 0.299 uM, (iv) 0.447 uM, (v) 0.596 uM, (vi) 0.744 uM, (vii) 0.891 pM, (viii) 1.03 pM,

(ix) 1.18 pM, (x) 1.33 uM, and (xi) 1.47 pM.

(b) Stern-Volmer plot for the quenching process from 0.149 uM to 1.47 uM concentrations of Fe(lll).

Table 1. Comparative analysis of fluorescent sensors for Fe(ll1).

Fluorescent sensor Linear range (uM) LOD (uM) Reference
Carbon dot derived from coffee 0-100 431 [47]
waste

S-doped silicon quantum dots 1-20 0.210 [48]
Schiff base-ZnS NPs 10-500 10.2 [49]
PFM 0-3 0.12 [50]
Dopamine Functionalized S, N

Co-doped Carbon Dots 5-200 2.86 [51]
Proposed sensor 0.149 -1.47 0.093 This work

“5-(4-methoxyphenyl) -3-(5-methylfuran-2-yl) -1- phenyl-4,5-dihydro-1H-pyrazole
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Figure 9 (a) & (b). Selective suppression of the fluorescence in L!@2ZnS NPs by Fe(llI).

Selectivity

The key feature of any chemical sensor is to
selectively detect the analyte [52]. The emission
behaviour of our probe was studied in the presence
of various biologically significant metal ions, each
at a concentration of 1.18 uM. The tested ions
included Mn(11), Ni(ll), AI(1IT), Cu(ll), Pb(11), Mg(ll),
Zn(11), Co(ll), Hg(ll), and Fe(I1). While most of these
ions are either essential or toxic elements typically
found in biological environments, Al(lIl) was also

considered despite its lack of biological necessity,
owing to its trivalent charge and potential to interfere
with Fe(l11) detection. Among these, only Fe(lll)
was able to profoundly diminish the emission intensity
of the probe, demonstrating remarkable selectivity
for the Fe(l11) ion over other cations. In Figure 9(a),
the photoluminescence of ZnS NPs serves as the
control, providing a baseline for comparison with the
responses observed upon the addition of various
cations. A quantitative representation of this data is
shown as a bar graph in Figure 9(b).
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Figure 10. Bar diagram depicting the fluorescence signal of L'@ZnS NPs in the presence
of other cations at a 10-fold excess of concentration.
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Table 2. Effect of foreign species on the luminescence signal of the probe in the presence of
Fe(l11) (0.744 uM).

Foreign Concentration (uM) Signal change
Species %
Ni(IT) 74.4 15
Pb(ll) 74.4 0.8
Zn(ll) 74.4 0.3
AI(IT) 74.4 3.2
Co(ll) 74.4 2.3
Mg(ll) 74.4 3.7
Mn(ll) 74.4 3.3
Fe(I1) 74.4 4.5
Cu(ln) 74.4 4.1
Hg(ll) 22.3 2.9

Interference Study

A study was conducted to examine the impact of the
concentration of the above-mentioned cations on the
fluorescence intensity of L'@ZnS NPs containing
0.744 uM Fe(l1l) ion. Fluorescence signals of the
probe in the presence of Fe(lll) were measured at
different concentrations of the other cations: one-fold
(0.744 uM), ten-fold (7.44 uM) and hundred-fold
(74.4 pM) excess of the concentration of Fe(ll1) ions.
Figure 10 shows the effect of the cations at 10-fold
excess of the concentration of Fe(l11) on the intensity
of emission of the probe. The results reveal that none
of the cations, except for Hg(l1), caused any significant
interference, even at a 100-fold excess concentration
compared to Fe(lll). Hg(l1) at concentrations above
a 30-fold excess relative to Fe(lll) demonstrated a
signal variation exceeding 5% (Table 2).

Mechanism of Quenching

It is clear from Figure 6 that the luminescence
intensity of the probe is reduced by the addition
of Fe(lll) ions. The possible mechanism for the
quenching of fluorescence was investigated. The
guenching mechanisms include static, dynamic or a
combination of both [53].

The plot between relative intensity against
concentration of the quencher, known as the Stern-
Volmer plot, would be linear if the process operates
through a static or dynamic mechanism, and would
be non-linear if it involves a combination of both [53,
54-55]. From the linear calibration curve in our study

(Figure 9), it is evident that a combined static and
dynamic quenching mechanism can be ruled out.

Moreover, the quenching constant for dynamic
quenching process is typically less than 100 Lmol™,
whereas for static quenching, it typically exceeds 100
Lmol* [53]. The quenching constant obtained (Figure
9) is found to be 4.88141 x 10°Lmol, indicating that
the mechanism is more likely to be static quenching.

To gain further insights into the mechanism,
we recorded the UV-Vis spectra of the L*@ZnS NPs
in the absence and presence of Fe(lll). A noticeable
change in the absorption band of the fluorophore in
the presence of the quencher is indicative of complex
formation and is a distinctive feature of static
quenching [56-57]. It is evident from Figure 11 that
there is a red shift in the absorption wavelength of the
L'@ZnS NPs after the addition of Fe(lll), providing
additional evidence for static quenching.

Here, the fluorophore interacts with the
quencher to form a non-emissive ground-state charge-
transfer complex [58]. The partially filled d-orbitals
of Fe(lll) can accept electrons from the oxygen-
containing functional groups on the L'@ZnS NPs due
to hard acid-hard base interaction, resulting in the drop
of luminescence intensity of the probe [47, 59].

The interference of Hg(ll) in Fe(l1l) detection,
observed at concentrations exceeding a 30-fold
excess, is presumably due to its strong binding affinity
toward the electron-rich surface of the L'@ZnS
NPs [60].
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Figure 11. Absorption spectra of (a) L'@ZnS NPs and (b) L'@ZnS NPs + Fe(lll) ions.

CONCLUSION

A Schiff base ligand was prepared by the condensation
reaction of salicylaldehyde and hexadecylamine and
was characterised using mass spectrometry and *H
NMR spectroscopy. ZnS NPs stabilised with this
ligand were synthesised and characterised using UV-
Vis spectroscopy, PL, and TEM. The synthesised
Schiff base-stabilised ZnS NPs could act as a
fluorescent probe for the determination of Fe(lll)
ions. The proposed assay exhibited a linear range
from 0.149 uM to 1.47 uM with LOD and LOQ
of 0.093 uM and 0.282 uM, respectively. The
developed sensor displayed high selectivity and
sensitivity for Fe(l11) ions, with static quenching
identified as the mechanism.
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