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This study investigates the impact of various metallic dopants on the structure of zeolitic 

imidazolate framework (ZIF-8) when used as the anodic electrode in a fuel cell. The wet 

impregnation method is employed to incorporate different transition metals, including Titanium 

(Ti), Manganese (Mn), Cobalt (Co), Copper (Cu), Silver (Ag), and Gold (Au), into the ZIF-8 

lattice structure. The electrochemical properties of these ZIFs are evaluated using Cyclic 

Voltammetry (CV) measurements. The CV plots for all electrodes exhibit regular capacitive 

characteristics, an asymmetric cyclic shape, and oxidation/reduction peaks. The Specific  

Capacitances (CP) for period 4 elements follow this increasing order: Cu/ZIF-8 (0.014013568 

F/g) < Mn/ZIF-8 (0.017259853 F/g) < Ti/ZIF-8 (0.023771477 F/g) < Co/ZIF-8 (0.097503785 

F/g). In the case of group 11 (1B) elements, the CP increases in the following order: Cu/ZIF-8 

(0.014013568 F/g) < Ag/ZIF-8 (0.019497694 F/g) < Au/ZIF-8 (0.092614304 F/g). Based on these 

findings, it is evident that Co/ZIF-8 exhibits superior electrochemical properties for proton 

conduction and holds promise as a candidate for developing a fuel cell anode. 
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The expanding population worldwide has driven an 

increased demand for energy, whether for domestic or 

industrial purposes. Presently, approximately 80 % of 

the world’s energy demand is met through the supply 

of fossil fuels [1]. However, these sources are non-

renewable and also emit harmful and toxic gases, 

underscoring the urgent need for a more sustainable 

energy source [2, 3]. In addition to being renewable and 

clean, fuel cell offers superior power conversion 

efficiency, reaching levels as high as 90 %, which 

surpasses traditional diesel and gas turbine technologies 

[4-6]. 

 
In recent years, traditional metal-based electrodes 

such as silver, copper, nickel, gold, and titanium 

have been found to release harmful environmental 

contaminants and lack durability. To address this issue, 

researchers are actively developing alternative  

materials, including conductive polymers, transition 

metal complexes, and metal-organic frameworks 

(MOFs) [7-9]. MOFs have gained popularity in fuel 

cell systems due to their affordability, reliability, and 

ease of production. They offer high charge density and 

cost-effectiveness, often demonstrating promising fuel 

cell properties such as crystallinity, pore size, specific 

surface area, and low crystal density [10, 11]. 

However, not all MOFs are suitable as electrode 

materials due to their unsuitable physical and chemical 

properties. For example, MOF Material Institute  

Lavoisier-101 (MIL-101) exhibits low water stability 

and weak oxidation resistance [12], while CPO-27-Ni 

has a limited specific surface area and pore volume 

[13]. On the other hand, ZIF-8, stands out due to its 

high surface area [14], hierarchical pore structure [15, 

16], and excellent thermal stability [14, 17], making it 

a promising candidate for an MOF-based electrode. 

Nonetheless, a significant challenge lies in the high 

charge transfer resistance and large band gap of  

pristine ZIF-8 [18, 19]. In response, Varangane et al. 

[20] successfully reduced the band gap by incorporating 

Cu(II) into its structure, but specific capacitance (CP) 

evaluation remains unexplored.  
 

To our knowledge, no prior research has 

thoroughly assessed various metal-doped ZIF-8 through 

cyclic voltammetry. This study aims to refine the 

criteria for selecting transition metals by comparing 

their performance. Two categories of transition metal 

precursors, from the fourth period (Ti, Mn, Co, Cu), and 

group 11 (1B) (Cu, Ag, Au), were incorporated into the 

ZIF-8 framework. Subsequently, these ZIFs underwent 

evaluation for their electrochemical properties, including 

cyclic voltammetry (CV), to assess their suitability as 
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electrode materials. This research offers valuable scientific 

insights into the advancement of ZIF-8 materials for 

achieving heightened energy efficiency in fuel cells, 

serving as energy conversion devices. 

 

METHODOLOGY 

 

Materials 

 

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, Sigma, ≥ 

98 %), 2-methylimidazole (2-MeIM, Sigma, ≥ 99 %), 

triethylamine (TEA, Sigma, ≥ 99.55 %), silver nitrate 

(AgNO3, Alfa Aesar, ≥ 99 %), titanium isopropoxide 

(TTIP, Sigma, ≥ 95 %), cobalt (II) nitrate hexahydrate 

(Co(NO3)2·6H2O, Sigma, ≥ 98 %), copper (II) nitrate 

trihydrate (Cu(NO3)2·3H2O, Sigma, ≥ 98 %), manganese 

(II) chloride tetrahydrate (MnCl2·4H2O, Sigma, ≥ 99 %), 

and tetrachloroauric (III) acid trihydrate (HAuCl4·3H2O, 

Sigma, ≥ 99.5 %) were used in this research. 

 

Preparation of ZIF-8 and Transition Metal/ZIF-8 

 

Zn(NO3)2.6H2O, 2-MeIM, and deionized water are 

mixed in the following ratio of 1:6:500 respectively to 

create ZIF-8 crystals. The organic linker solution are 

made by dispersing 2-MeIM (3.312 g) in deionized 

water (48.45 g), while the metal solution is obtained 

by completely dissolving Zn(NO3)2.6H2O (2 g) in 

deionized water (12.11 g). Before combining the metal 

and ligand solutions, resulting in a cloudy mixture, 

TEA (3 mL) is gradually introduced into the ligand 

solution while swirling. The solution was left stirred 

for 90 min. At this stage of the process, all the 

precursors for the transition metals were added with 

varying amount of dopant precursors. The excess  

reactants are removed from the sediments by washing 

them three times with deionized water (10 mL x 10 mL 

x 5 mL) after decanting the residual. The resulting white 

powder is dried for a minimum of 12 hours at 60℃ in 

an oven before being ground by using a mortar and 

then further dried for an additional 12 hours at 120℃. 

 

Characterization 

 

The composition and crystallinity of the samples are 

confirmed using the X-ray diffraction (XRD, Rigaku) 

instrument, employing Cu-K𝛼 radiation (λ = 1.54060 

Å; 2𝜃 = 0° to 90°). The functional groups are analysed 

using Fourier transform infrared spectroscopy (FTIR, 

Perkin Elmer) instrument, covering wavenumbers 

between 4000 cm-1 and 400 cm-1. The specific surface 

area is calculated using the Brunauer-Emmett-Teller 

(BET) method.  

 

Electrochemical Measurements 

 

A screen-printed electrode (SPE, DS 110), consisting 

of the counter electrode, the working electrode (carbon), 

and the reference electrode (silver), was utilised to 

conduct tests. Additionally, a potentiostat instrument 

(Gamry Interphase 1000) was employed to study the 

electrochemical characteristics of the samples. Prior to 

testing, 0.01 g of the sample was mixed in a solution 

of 1 ml deionized water and 10 𝜇l Nafion® 117. After 

sonication of the mixture for 10 minutes, 20 𝜇L of 

the supernatant from the sample dispersion was 

progressively deposited onto SPE. A combination of 

0.1 M Na2SO4 and 2.5 mM K3[Fe(CN)6] was used as 

the electrolyte in the test (6 ml). 

 
In Cyclic Voltammetry (CV), a voltammogram 

plot was obtained. The specific capacitance value 

was then calculated using Equation 1 based on the 

voltammogram.  

 

Cp = 
𝐴

[2𝑚𝑘 (𝑉1−𝑉2)]
 Equation 1 

 
Where Cp (F/g) represents the specific capacitance, A 

is the area under the graph, m is the mass of material 

(0.01 g), k is the scan rate set at 0.0499999 V/s and V1-

V2 represents the potential window. 

 
RESULT AND DISCUSSION 

 
Chemical Composition 

 
The crystal structure and composition of the samples 

were analysed using XRD spectroscopy. Figure 1(a) 

displays the XRD pattern of the ZIF-8 crystal 

structure. Notably, a strong peak at 7.40° indicates 

significant crystallinity of ZIF-8 [21]. The XRD 

patterns reveal sodalite zeolitic crystals for ZIF-8, 

with diffraction peaks corresponding to the (011), 

(002), (112), (013), (222), (114), (233), (134), and 

(044) planes at 7.40°, 10.26°, 12.70°, 16.34°, 18.08°, 

21.95°, and 26.52°, respectively. These depicted XRD 

patterns are remarkably consistent with those described 

in the literature [14, 22].  

 

Figure 1 shows XRD pattern similar to ZIF-8 

for Ti/ZIF-8, Mn/ZIF-8, Co/ZIF-8, Cu/ZIF-8, Ag/ZIF-

8, and Au/ZIF-8. It has been clarified that the insertion 

of different substances into the structure has no effect 

on ZIF-8's crystallinity, thus maintaining the validity 

of the MOF [23]. The distinction is evident in the 

emergence of distinct Ti, Mn, Co, Cu, Ag, and Au 

peaks in the patterns (see Figure 1). Referring to 

Figure 1(a), the emergence peak at 36.17°, attributed 

to (004) plane, can be associated with the presence of 

Ti. Based on Figure 1(c), the distinctive peaks of the 

Mn metals were not observed, indicating a possible 

amorphous phase for the Mn species [24]. 
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Figure 1. XRD Pattern of (a) ZIF-8, (b) Ti/ZIF-8, (c) Mn/ZIF-8, (d) Co/ZIF-8, (e) Cu/ZIF-8, (f) 

Ag/ZIF-8 and (g) Au/ZIF-8. 

 

 
As shown in Figure 1(d), no impurity peaks 

corresponding to Co species were observed. 

Interestingly, the intensity of the distinctive diffraction 

peaks decreased upon the addition of Co particles. 

Notably, the prominent diffraction peaks expected 

at 15.1°, 26.5°, and 43.3°, which correspond to the 

(110), (300), and (315) planes, respectively, were 

not detected. This observation confirms the successful 

incorporation of cobalt into both the porous surface and 

interior of the ZIF-8 structure (see Figure 1(d)). 

 

The functional groups in the samples were 

analysed using FTIR spectroscopy. Figure 2 displays 

the FTIR spectra for all samples. The characteristic 

peaks of ZIF-8 were observed at 1582.50 cm -1, 

1423.60 cm-1, 1145.88 cm-1, 995.41 cm-1, and 758.68 

cm-1, representing the C=N stretch mode, C-N stretch 

mode, aromatic C-N stretch mode, C=C stretch 

mode, and C-H bending mode, respectively. The 

peaks of the Ti-OH bond at 1337 cm-1 confirm the 

addition of Ti to the frameworks, although they 

may not be clearly visible due to overlap with 

other peaks. For Mn/ZIF-8, a peak at 630.47 cm -1 

is observed, demonstrating the existence of the 

Mn-N stretching band, consistent with the literature 

report [24]. 

 

 

 
 

Figure 2. FTIR Spectra of (a) ZIF-8, (b) Ti/ZIF-8, (c) Mn/ZIF-8, (d) Co/ZIF-8, (e) Cu/ZIF-8, (f) Ag/ZIF-8 and 

(g) Au/ZIF-8. 
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Table 1. The BET properties of metal doped ZIF samples 

 

Material 
Surface Area 

(m2/g) 
Vmeso (cm3/g) Vmicro (cm3/g) 

Median Pore 

Diameter (nm) 

ZIF-8 616.49 0.1720 0.1912 61.548 

Ag/ZIF-8 375.587 0.0456 0.1383 42.9092 

Ti/ZIF-8 143.642 0.0362 0.0985 44.5042 

Mn/ZIF-8 303.01 0.0654 0.0922 74.823 

Co/ZIF-8 298.692 0.0546 0.0899 43.0163 

Cu/ZIF-8 474.11 0.0572 0.1383 28.761 

Au/ZIF-8 - 0.0066 0.0029 9.5446 

 

 

For Co/ZIF-8, it inherits all the base peaks of 

ZIF-8 along with Zn-N stretching at about 425 cm-1, 

which is similar to peak reported by Hu et al. [25]. 

Next, for Cu/ZIF-8, Cu-N bonding vibrations have 

been identified at 623.68 cm -1 within Cu-doped 

ZIF-8 compounds, consistent with prior studies 

[26]. Overall, these findings support the notion 

that the ZIF-8 framework is unaffected by the 

presence of the dopants. 

 

Surface Area and Pore Size 

 

Figure 3 displays the nitrogen adsorption-desorption 

results from all the ZIFs. The Brunauer-Emmett-Teller 

(BET) method was utilised to calculate the specific 

surface area of ZIF-8, resulting in 616.49 m2 g-1 at 

relative pressures between 0.00 and 0.15 (Figure 3(a)). 

The mesopore-size distribution was determined 

using the Barrett-Joyner-Halenda (BJH) technique 

by analysing the desorption branches of the isotherms. 

The median pore diameters are listed in Table 1. The 

nitrogen isotherm type observed for all ZIFs, as 

depicted in Figure 3, was found to be Type IV, closely  

matching previous reports [27, 28]. 

 

A hysteresis loop is observed at higher relative 

pressures, particularly at P/P0 > 0.8 for ZIF-8, due to 

the presence of large meso/micropores within the ZIF-

8 frameworks [29, 30]. This phenomenon was also 

observed for other ZIFs because the inclusion of the 

transition metals does not alter the overall frameworks 

characteristics. Considering the cumulative volume of 

pores between 1.00 and 400.00 nm in diameter, the 

mesopore volume (Vmeso) was calculated to be 

0.1720 cm3 g-1. The micropore volume of ZIF-8 was 

calculated to be 0.1912 cm3/g. Table 1 lists the surface 

area, the Vmeso and Vmicro of the doped samples. 

The results clearly indicate that the doping process 

negatively impacted the available surface area for 

active sites. Agglomeration affects the inclination of 

the isotherms in the low relative pressure range, and 

the hysteresis loops in the high relative pressure zone 

serve as indicators of the presence of hierarchical 

micro-mesopores. The hysteresis loop, H3, which 

represented the slit-shaped pore, can be observed 

in all ZIFs as shown in Figure 3. 

 

 

 
 

Figure 3. N2 adsorption-desorption isotherm of (a) ZIF-8, (b) Ti/ZIF-8, (c) Mn/ZIF-8, (d) Co/ZIF-8, (e) Cu/ZIF-

8, (f) Ag/ZIF-8 and (g) Au/ZIF-8. 
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Figure 4. Cyclic voltammograms of (a) ZIF-8, (b) Ti/ZIF-8, (c) Mn/ZIF-8, (d) Co/ZIF-8, (e) Cu/ZIF-8, (f) 

Ag/ZIF-8 and (g) Au/ZIF-8. 

 

 

Cyclic Voltammetry 

 

Cyclic voltammetry (CV) is a widely used 

electrochemical method to investigate the reduction 

and oxidation of molecular species. Figure 4(a) 

demonstrates that ZIF-8 exhibits a less pronounced 

oxidation reaction, as indicated by the more prominent 

cathodic peak compared to the anodic peak. Except 

for Co/ZIF-8, the cyclic voltammograms of Ti/ZIF-

8, Mn/ZIF-8, Cu/ZIF-8, Ag/ZIF-8, and Au/ZIF-8 

share a similar shape to ZIF-8, shown in Figure 4(b), 

(c), (e), (f), (g), which is known as a quasireversible 

shape. These species can undergo oxidation and 

reduction in both directions; however, there are some 

kinetic barriers that prevent a perfectly reversible 

reaction. Based on the shape of the voltammograms, 

it was observed that the cathodic peak current (ipc) 

is approximately equal to the anodic peak current (ipa), 

but the peak-to-peak separation (∆EP) is significant 

and not ideal. In contrast, Co/ZIF-8 exhibits an 

irreversible shape, as depicted in Figure 4 (d), with a 

prominent anodic peak. This indicates that Co/ZIF-8 

can only undergo oxidation and is not reduced back to 

its original form. Considering that our study aims to 

identify a material capable of undergoing a high 

oxidation reaction and serving as the anode in a fuel 

cell, Co/ZIF-8 is suggested as a potential candidate. 

 

In addition, cyclic voltammetry (CV) is a 

valuable technique for determining the specific  

capacity of materials. Therefore, CV measurements 

were conducted for all ZIFs. The cyclic voltammogram 

shown in Figure 4 was generated using a voltage range 

of 0.0–1.2 V and a scan rate of 49.9999 mV/s. Across 

the entire potential range, from 0.0 to 1.2 V, the CV 

plots for all electrodes exhibited a regular capacitive 

characteristic, an asymmetric cyclic shape, and 

oxidation/reduction peaks. To calculate the specific 

capacitance (Cp) of the electrodes from the CV curves, 

Equation 1 was applied. The Cp of the ZIF-8, Ti/ZIF-

8, Mn/ZIF-8, Co/ZIF-8, Cu/ZIF-8, Ag/ZIF-8, and 

Au/ZIF-8, which were found to be 0.015024645 F/g, 

0.023771477 F/g, 0.017259853 F/g, 0.097503785 F/g, 

0.014013568 F/g, 0.019497694 F/g, and 0.092614304 

F/g, respectively.  

 

The value of CP indicates how large the voltage 

could be stored when utilising the materials . 

According to the results, the CP value is inversely 

proportional to the Rct values determined by the 

EIS in the following order: Cu/ZIF-8 < Mn/ZIF-

8 < Ti/ZIF-8 < Co/ZIF-8. This is because when 

the resistance increases, the voltage encountered 

is expected to increase across the period 4. While 

going down the group 11 (1B), the CP followed this  
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increasing order: Cu/ZIF-8 < Ag/ZIF-8 < Au/ZIF-8, in 

agreement with the increasing surface area obtained 

from BET analysis. It is evident that the CP for the 

Co/ZIF-8 anode is much greater compared to those 

for other anode materials. This difference may be 

due to the electrodes' higher specific surface area 

along with a larger pore volume. 

 

CONCLUSION 

 

The CV measurements indicated that all ZIFs  

exhibited oxidation reactions. The CP for period 

4 showed the following increasing order: Cu/ZIF-

8 (0.014013568 F/g) < Mn/ZIF-8 (0.017259853 F/g) 

< Ti/ZIF-8 (0.023771477 F/g) < Co/ZIF-8 (0.097503785 

F/g). For group 11 (1B), the CP followed this increasing 

order: Cu/ZIF-8 (0.014013568 F/g) < Ag/ZIF-8 

(0.019497694 F/g) < Au/ZIF-8 (0.092614304 F/g). 

Based on these findings, it was observed that Co/ZIF-8 

demonstrated superior electrochemical properties for 

proton passage and could be developed as a fuel 

cell anode. 
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