Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis and Antifungal Potential of Cyperus iria, Fimbristylis miliacea, and Fimbristylis globulosa

Nina Asqalani Abdullah¹, Wan Zuraida Wan Mohd Zain^{1*}, Fatimah Salim^{2,3} Nurul Wahida Ramli¹, Nur' Amira Hamid¹ and Mohd Salleh Rofiee⁴

 ¹Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin Campus, 77300, Melaka, Malaysia
 ²Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
 ³Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
 ⁴Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Selangor, Malaysia
 *Corresponding author (e-mail: wanzuraida@uitm.edu.my)

The plants from the Cyperaceae family have been long used for natural remedies including biopesticides to treat plant pathogens. The species Cyperus iria, Fimbristylis miliacea, and Fimbristylis globulosa contain bioactive compounds such as flavonoids and terpenoids that can be used to treat plant disease including fungal infection on plants. However, there is no reported data on the antifungal potential of the plants on Colletotrichum and Fusarium species, nor phytochemical studies conducted on the species. This study investigates the phytochemical contents of C. iria, F. miliacea, and F. globulosa methanolic extracts using liquid chromatographymass spectrometry (LC-MS) technique, and their antifungal activity using agar well diffusion method and Minimum Inhibitory and Fungicidal Concentration (MIC & MFC). A total of 131, 60 and 95 compounds mainly from flavonoids, terpenes and fatty acids classes have been detected in the C. iria, F. miliacea, and F. globulosa extracts, respectively. The antifungal activity of the extracts against Colletotrichum spp. showed moderate to good activity with MIC and MFC values of 125 ug/mL and 250 ug/mL, respectively. Their antifungal activity against Fusarium spp. also showed moderate to good activity with MIC and MFC value of 250 ug/mL for C. iria and F. miliacea, and moderate activity for F. globulosa with MIC value of 250 ug/mL and MFC value of 500 ug/mL. These findings were supported by previous studies that Cyperaceae contain secondary metabolites which showed potential antifungal activity of Cyperaceae.

Keywords: Antifungal; Cyperaceae; LC-MS; phytochemical; plant extracts

Received: September 2023 ; Accepted: November 2023

The Cyperaceae is a family of graminoid (grass-like), monocotyledonous flowering plants known as sedges, which superficially resemble the closely related rushes and the more distantly related grasses. The family is large, with some 5,500 known species described in about 90 genera [1-3]. They can be found in Tropical Asia and Tropical South America [4]. While sedges may be found growing in almost all environments, many are associated with wetlands, or with poor soils. Many sedges are used as foods, food additives, drinks, fibers, animal poisons, and in the manufacturing of items including paper, perfumes, medicines, mats, boats, clothing, shoes, ropes, and roofing.

The species from this family have been proven to exert various biological activities such as antioxidant, antimicrobial, anti-inflammatory, anticancer and many more [5, 6]. This is due to the presence of biological active classes of compounds including flavonoids, terpenoids, phenolics, essential oils, alkaloids, tannins, and saponins [7]. Among the classes of bioactive compounds reported from the Cyperaceae species, flavonoids and terpenoids were proven to be associated with antifungal activity [7]. In this study, we have selected two genera from the Cyperaceae family which are Cyperus and Fimbristylis. The previous study on the genus Cyperus reported the existence of stilbenoids, flavonoids, triterpenes, and other compounds. However, there is limited study on phytochemical compounds on the genus of Cyperus and no work has been done on Fimbristylis. In Malaysia, Cyperaceae can be found in wetland areas and paddy fields [4]. The presence of this weed has caused a nuisance to the farmers as it requires chemical herbicide to eradicate the weed. This however may raise safety concerns among the consumer as we all know that rice is a staple food in Malaysia. Thus, the presence of plant metabolites in this species makes it possible to be applied as biopesticides.

Colletotrichum spp. and Fusarium spp. are two most important plant pathogens which can infect a variety of hosts such as grains, legumes, cereals, vegetables, and fruits [8, 9]. Colletotrichum spp. is the pathogen which can cause anthracnose disease [10]. It is the causing agents of anthracnose which are able to cause irregular circular spots on leaves, invade the shortened crown and expand into an annular ring, causing the host to be unable to absorb water and nutrients and eventually killing the host [10, 11]. While Fusarium spp. is able to cause bakanae disease in rice [8]. It can be mainly found in soil. Mycotoxins were produced by some of the species in this genus which may affect cereal crops and animal health if they enter the food chain [8]. This present study has been undertaken to determine the chemical constituents of the methanolic extract from C. iria, F. miliacea, and F. globulosa using LC-MS and correlate them to their in vitro antifungal activities against Colletotrichum spp. and Fusarium spp.

EXPERIMENTAL

Sample Extraction

Three plant samples; C. iria, F. miliacea, and F. globulosa were collected from Merlimau, Melaka, Malaysia (2. 1812° N, 102.4266° E) from September 2022 until December 2022. The sample was identified by a botanist Dr Shamsul Khamis from UKM. The voucher numbers for the plant are ID 073/2023 (C. iria), ID 072/2023 (F. miliacea), and ID 071/2023 (F. globulosa). The samples were cleaned and oven dried in a weed laboratory in UiTM Melaka, Campus Jasin for 2-3 days and whole plant parts were grinded into fine powder using a heavy-duty grinder (Retsch GmbH, Germany). The samples were extracted using a maceration method described by Rukayadi et al. (2008), with slight modification. 100 g of powdered samples were soaked in 500 ml of methanol (HmbG Chemicals) and left for three days at room temperature. The mixtures were filtered using Whatman filter paper No. 1 (Whatman International Ltd.) and further concentrated using a rotary evaporator at 60°C.

Liquid Chromatography- Mass Spectrometry (LC-MS) Analysis

Instrument

The LC/MS-QTOF system used in this study comprised of an Agilent 1200 liquid chromatography system, equipped with a binary pump, a vacuum degasser unit, an auto sampler and 6520 quadrupole time of flight mass spectrometer with an electrospray ionization (ESI) source in positive mode with optimum gas temperature at 325°C, gas flow at 11 L/min and nebulizer at 35 psi. Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis and Antifungal Potential of *Cyperus iria*, *Fimbristylis miliacea*, and *Fimbristylis globulosa*

Chromatography and Mass Spectrometry Method

Chromatographic separation was performed at 40° C using Agilent ZORBAX Eclipse Plus C18 Rapid Resolution HT (2.1 x 100 mm) 1.8 µm with (A) 0.1% formic acid in ultra-pure H₂O and (B) 0.1% formic acid in acetonitrile. The gradient elution program was 0.00 – 18.00 min, 5 -95% (B); 18 to 23 minutes; 95% (B). 23.01 minutes; 5% (B). The total run time was 30 minutes. The LC condition was re-equilibrated for 2 minutes before starting the new injection. The sample injection volume was set at 2 µl and the flow rate of the mobile phase was set at 0.25 mL/min.

Sample Preparation

The 1 mg/mL sample was prepared and vortexed for 60 seconds. The sample was then centrifuged at 10,000 RPM for 10 minutes, and the supernatant was filtered using a 0.22 μ m pore size syringe filter before analysis.

Data Analysis

Agilent MassHunter Qualitative Analysis B.05.00 software (Agilent Technologies, Santa Clara, CA, USA) was used for the data analysis (MS data (.d)). The chromatographic profiles were analysed based on the accurate mass data identified and the predicted compounds were annotated using Europian Bioinformatics Institute, Human Metabolome Database, National Center for Biotechnology Information, National Library of Medicine, FooDB, and METLIN database.

Antifungal Activity

Colletotrichum spp. and *Fusarium* spp., isolated from the plant pathogen were obtained from Pathology Lab in Faculty Plantation and Agrotechnology, UiTM Melaka, Campus Jasin. The fungal were maintained on potato dextrose agar (PDA) in the incubator for seven days. This procedure was done using the method from Aneja and Joshi (2009) and Zain, et al (2019). Ten mL of the potato dextrose agar (PDA) were poured into petri dishes and were allowed to solidify. The wells were prepared in the plates using cork borers with the diameter of 5 mm. Then, 20 µL of microorganism and compounds were pipetted into the well directly. This step was repeated for both extracts and control. Control used was Kencozeb M45 and it was prepared by dissolving 0.025 g of Kencozeb M45 powder in 10 mL distilled water. The plates were incubated at 37 °C. All tests were made in three replications. The zones of inhibition (ZoI) around the discs will be measured after 24/48/72 hours of incubation and the results were analysed statistically.

Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis and Antifungal Potential of *Cyperus iria*, *Fimbristylis miliacea*, and *Fimbristylis globulosa*

T 1 / 1 1		Plant samp	ple	Molecular formula	(<i>m</i> /z)	Class of compound	Reference
Isolated compounds	C. iria	F. miliacea	F. globulosa	$C_7H_4Cl_2O_3$	223.9885	Carboxylic Acid	National Center for Biotechnology Information, 2005
3,5-Dichlorosalicylic acid	\checkmark			$C_{12}H_{23}NO_{10}$	342.1389	Monosaccharides	METLIN Database
6-(Alpha-D-Glucosaminyl)-1D-myo-inositol	\checkmark			C19H18O6	381.0723	Organic Cyclic	National Center for Biotechnology Information, 2009
5,7,2',5'-Tetramethoxyflavone	\checkmark			$C_{20}H_{16}O_4S$	295.1099	Benzenoids	National Center for Biotechnology Information, 2005
7-Hydroxymethyl-12- methylbenz[a]anthracene	\checkmark			$C_{26}H_{28}O_7$	475.1738	Pyranoxanthones	National Center for Biotechnology Information, 2009
Artonin S	\checkmark			C17H30O13	460.2009	Oligosaccharides	FooDB, 2010
Beta-D-xylopyranosyl-(1-4)-alpha-L- rhamnopyranosyl-(1-2)-D-fucose	\checkmark			C11H21NO7	280.1382	Organonitrogen	National Center for Biotechnology Information, 2017
Mycosporine	\checkmark			$C_{11}H_{19}NO_6$	262.1274	Amino acid	METLIN Database
N-hydroxy-L-phenylalanine	\checkmark		\checkmark	$C_9H_{11}NO_3$	182.0804	Organonitrogen	National Center for Biotechnology Information, 2007
Betaine	\checkmark	\checkmark		$C_5H_{12}NO_2$	118.0859	Organonitrogen	National Center for Biotechnology Information, 2004
Vidarabine	\checkmark			$C_{10}H_{13}N_5O_4$	268.1034	Organic Heterocyclic	National Center for Biotechnology Information, 2005
Triethyl citrate	\checkmark			C12H20O7	294.1544	Organochaclogen	National Center for Biotechnology Information, 2005
L-Leucine	\checkmark			$C_6H_{13}NO_2$	132.1013	Amino acid	National Center for Biotechnology Information, 2004
N-(1-Deoxy-1-fructosyl)valine	\checkmark	\checkmark	\checkmark	C11H21NO7	280.1386	Organonitrogen	National Center for Biotechnology Information, 2017
m-Coumaric acid	\checkmark			C9H8O3	182.0809	Organic Acid	National Center for Biotechnology Information, 2005
1,1'-(Tetrahydro-6a-hydroxy-2,3a,5- trimethylfuro[2,3-d]-1,3-dioxole-2,5-diyl)bis- ethanone	\checkmark			$C_{12}H_{18}O_{6}$	276.1441	Flavonoids	National Center for Biotechnology Information, 2005
N-(1-Deoxy-1-fructosyl)isoleucine	\checkmark			C ₁₂ H ₂₃ NO ₇	294.1543	Amino acid	National Library of Medicine, 2017
N,N-Diethylglycine		\checkmark		$C_6H_{13}NO_2$	132.1016	Amino acid	National Library of Medicine, 2005
N-(1-Deoxy-1-fructosyl)phenylalanine				$C_{15}H_{21}NO_7$	328.1386	Amino acid	National Library of Medicine, 2015

Table 1. Compounds identified using LC-MS analysis from C. iria, F. miliacea, and F. globulosa.

Tranylcypromine glucuronide	\checkmark		C15H19NO6	310.1283	Monoamine	METLIN Database
3-Isochromanone	\checkmark		C9H8O2	166.0856	Benzopyrans	METLIN Database
3-Amino-2-naphthoic acid	\checkmark		 C11H9NO2	205.0975	Carboxylic acid	National Library of Medicine, 2005
1,4,5,8-Tetraaminoanthraquinone	\checkmark		$C_{14}H_{12}N_4O_2$	291.0859	Anthraquinones	National Library of Medicine, 2005
Gambiriin B3	\checkmark		C ₃₀ H ₂₆ O ₁₁	563.1543	Flavonoids	National Library of Medicine, 2010
Cyanidin 3-(2"-glucuronosylglucoside)	\checkmark		C27H29O17	625.1402	Flavonoids	METLIN Database
Delhpinidin 3-neohesperidoside	\checkmark		C27H31O16	611.1612	Flavonoids	National Center for Biotechnology Information, 2005
6-Hydroxycyanidin 3-glucoside	\checkmark		C ₂₁ H ₂₁ O ₁₂	465.1031	Flavonoids	METLIN Database
Leucodelphinidin 3-[galactosyl-(1-4)- glucoside]	\checkmark		C27H34O18	669.1621	Flavonoid o- glycosides	(FooDB, 2010)
Cearoin	\checkmark		$C_{14}H_{12}O_4$	245.0806	Ketones	National Library of Medicine, 2005
4-(2-Hydroxypropoxy)-3,5-dimethyl-phenol	\checkmark	\checkmark	 C11H16O3	197.1165	Flavonoids	METLIN Database
Ishwarol	\checkmark		C ₁₅ H ₂₄ O	221.1893	Sesquiterpene	National Library of Medicine, 2009
Patchoula-2,4-diene	\checkmark		C15H22	203.1788	Sesquiterpene	METLIN Database
2,3,4,5,2',3',4',6'-Octamethoxychalcone	\checkmark		C ₂₃ H ₂₈ O ₉	487.1362	Flavonoids	METLIN Database
Aurantinidin	\checkmark		$C_{15}H_{11}O_6$	287.0548	Benzopyran	National Library of Medicine, 2005
Petunidin	\checkmark		C ₁₆ H ₁₃ O ₇	317.0671	Anthocyanin	National Library of Medicine, 2005
Seiricardine A	\checkmark		$C_{15}H_{26}O_2$	239.2000	Sesquiterpenes	National Library of Medicine, 2005
1,2,4,5-Tetramethylbenzene	\checkmark		$C_{10}H_{14}$	135.1166	Benzene	National Library of Medicine, 2005
Lyngbic acid	\checkmark		C15H28O3	279.1936	Phenolic acid	National Library of Medicine, 2006
Malvidin	\checkmark	\checkmark	 C ₁₇ H ₁₅ O ₇	331.0811	Anthocyanin	National Library of Medicine, 2005
Viscutin 1	\checkmark		 C ₂₇ H ₂₆ O ₁₁	527.1562	Organooxygen	National Library of Medicine, 2009
2",6"-Di-O-acetylononin	\checkmark	\checkmark	 C ₂₆ H ₂₆ O ₁₁	515.1541	Isoflavonoids	METLIN Database
11Z-Tridecenyl acetate	\checkmark		C15H28O2	241.2161	Monoterpenoids	METLIN Database
6-Desmethoxy hormothamnione triacetate	\checkmark		C27H26O11	527.1547	Chalcone	METLIN Database
Corynebactin	\checkmark		C ₃₉ H ₄₂ N ₆ O ₁₈	900.2907	Amino acid	National Library of Medicine, 2005
Isophylloflavanine			 C35H32O13	661.1932	Isoflavonoids	METLIN Database

Patchoula-2,4-diene	\checkmark			C15H22	203.1785	Monoterpenoids	METLIN Database
Phellatin	\checkmark	\checkmark		C ₂₆ H ₃₀ O ₁₂	557.1635	Tannins	National Library of Medicine, 2009
10-Tridecynoic acid	\checkmark	\checkmark		C13H22O2	228.1950	Fatty Acid	National Library of Medicine, 2006
2,6-Nonadien-1-ol				C9H16O	158.1540	Fatty Alcohol	National Library of Medicine, 2005
C17-Sphinganine		\checkmark		C17H37NO2	288.2893	Organic Amino	National Library of Medicine, 2014
4-Vinylcyclohexene				C8H12	109.1010	Hydrocarbons	National Library of Medicine, 2005
3(4-5)-Abeo-4,11:4,12-diepoxy-3- eudesmanol	\checkmark			C15H24O3	253.1795	Organic Heterocyclic	National Library of Medicine, 2014
(R)-Camphor	\checkmark			C10H16O	153.1270	Monoterpene	METLIN Database
4,8,12,16-Hexadecatetraenoic acid				C16H24O2	249.1847	Fatty Acid	National Library of Medicine, 2006
Juvenile hormone III				C16H26O3	267.1951	Sesquiterpenes	National Library of Medicine, 2005
(+)-Mayurone	\checkmark			C14H22O	207.1739	Organooxygen	National Library of Medicine, 2007
<i>cis</i> -Caryophyllene	\checkmark			C14H22	191.1789	Sesquiterpenoids	METLIN Database
4,8-dimethylnonanoyl carnitine	\checkmark			C18H36NO4	330.2642	Fatty Acid	National Library of Medicine, 2011
Curcumenol				C15H22O2	235.1686	Sesquiterpenoid	METLIN Database
Furodysinin	\checkmark			C15H20O	217.1584	Terpenoid	National Library of Medicine, 2005
(10S)-Juvenile hormone III diol				C16H28O4	307.1871	Sesquiterpenoid	National Library of Medicine, 2008
4,5-Di-O-methyl-8-prenylafzelechin-4beta-ol				C22H26O6	387.1802	Flavonoids	National Library of Medicine, 2009
Ishwarol				C15H24O	221.1889	Fatty Acid	National Library of Medicine, 2005
Plakortic acid	\checkmark			C17H30O4	321.2032	Organic Heterocyclic	National Library of Medicine, 2006
Phytosphingosine	\checkmark	\checkmark		C ₁₈ H ₃₉ NO ₃	318.3004	Organic Amino	National Library of Medicine, 2005
6-Oxabicyclo[3.1.0]hexane-2-undecanoic acid methyl ester	\checkmark			C ₁₇ H ₃₀ O ₃	283.2268	Fatty Acid	National Library of Medicine, 2005
13-methyl-octadecanoic acid	\checkmark	\checkmark	\checkmark	C19H38O2	316.3216	Fatty Acid	National Library of Medicine, 2006
Seiricardine A				C ₁₅ H ₂₆ O ₂	261.1815	Sesquiterpenoids	National Library of Medicine, 2005
Cetrimide				C17H38N	256.2987	Amine	National Library of Medicine, 2005
(2S)-2-hydroxyphytanic acid				$C_{20}H_{40}O_3$	346.3311	Prenolic Lipid	National Library of Medicine, 2004
Kakuol				C10H10O4	195.0650	Ketones	National Library of Medicine, 2005

4,8-Diacetyl-T2-tetrol				C19H26O8	405.1534	Sesquiterpenes	FooDB, 2010
1-Linoleoyl-2-(1-enyl-stearoyl)-sn-glycero-3- phosphocholine	\checkmark			C ₂₆ H ₅₁ NO ₇ P	520.3405	Fatty Acid	METLIN Database
Furodysinin				C ₁₅ H ₂₀ O	217.1582	Terpenoids	National Library of Medicine, 2005
3α-Hydroxy-4,4-bisnor-8,11,13- podocarpatriene	\checkmark			C15H20O	217.1588	Diterpenoids	METLIN Database
Plakortic acid	\checkmark			C17H30O4	321.2041	Organic Heterocyclic	National Library of Medicine, 2006
10,11-Epoxy-3,7,11-trimethyl-2 <i>E</i> ,6 <i>E</i> -tridecadienoic acid	\checkmark			C16H26O3	267.1959	Monoterpenoid	National Library of Medicine, 2005
8E-Tetradecenyl acetate				$C_{16}H_{30}O_2$	277.2145	Fatty Acid	National Library of Medicine, 2005
1-Monopalmitin				$C_{19}H_{38}O_4$	353.2663	Fatty Acid	METLIN Database
4,8,12,16-Hexadecatetraenoic acid				$C_{16}H_{24}O_2$	249.1841	Fatty Acid	National Library of Medicine, 2006
Juvenile hormone III				$C_{16}H_{26}O_3$	267.1954	Sesquiterpenes	National Library of Medicine, 2005
3,5,6,7,8,4'-Hexamethoxyflavone				$C_{21}H_{22}O_8$	403.1375	Flavonoids	METLIN Database
Malyngamide H				C ₂₆ H ₄₁ NO ₄	454.2934	Monoterpenoid	National Library of Medicine, 2006
1-Tetradecyl-2-acetyl-sn-glycero-3- phosphocholine	\checkmark			C ₂₄ H ₅₁ NO ₇ P	496.3383	Fatty Acid	National Library of Medicine, 2006
9Z,12Z,15E-Octadecatrienoic acid	\checkmark	\checkmark		C18H30O2	279.2314	Fatty Acid	National Library of Medicine, 2005
Avocadynofuran	\checkmark			C17H26O	285.1614	Organic Heterocyclic	National Library of Medicine, 2006
α-Hydroxy farnesyl phosphonic acid	\checkmark			C15H27O4P	325.1546	Sesquiterpenoids	METLIN Database
1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1,6- heptadien-3-one	\checkmark			C ₁₆ H ₂₄ O	271.1457	Sesquiterpenoids	FooDB, 2010
Polysorbate 60		\checkmark		C22H42O8	452.3233	Fatty Acid Esters	FooDB, 2010
10,11-Epoxy-3,7,11-trimethyl-2E,6E- tridecadienoic acid	\checkmark			C16H26O3	267.1959	Monoterpenoid	National Library of Medicine, 2005
(S)-Beta-himachalene				C15H24	205.1954	Sesquiterpene	National Library of Medicine, 2008
Trachelogenin				C21H24O7	389.1602	Phenylpropanoids	National Library of Medicine, 2005
Minosaminomycin			ν	C25H46N8O10	619.3405	Carbohydrates	National Library of Medicine, 2005
Cyperolone				C15H24O2	237.1840	Sesquiterpenes	National Library of Medicine, 2006
Santene				C9H14	123.1170	Terpenoids	National Library of Medicine, 2005

Emmotin A	\checkmark	\checkmark	\checkmark	C16H22O4	279.1600	Sesquiterpenes	National Library of Medicine, 2009
1-Monoacylgylceride				C21H36O4	353.2673	Glycerides	Europian Bioinformatics Institute, 2020
2,3-Dihydroxycyclopentaneundecanoic acid	\checkmark		\checkmark	C16H30O4	287.2228	Fatty Acid	(National Center for Biotechnology Information, 2023)
1-(O-alpha-D-glucopyranosyl)-27-keto- (1,3R,29R)-triacontanetriol	\checkmark			C36H70O9	685.4676	Fatty Acids	METLIN Database
3-Methyl-5-pentyl-2-furanundecanoic acid	\checkmark			C ₂₁ H ₃₆ O ₃	337.2723	Fatty Acid	(National Center for Biotechnology Information, 2023)
5-(1-Hydroxypropan-2-yl)isolongifol-4-ene	\checkmark	\checkmark	\checkmark	C ₁₈ H ₃₀ O	263.2368	Sesquiterpenoid	(National Center for Biotechnology Information, 2023)
Palmitic amide	\checkmark	\checkmark	\checkmark	C ₁₆ H ₃₃ NO	256.2625	Fatty Acid	(National Center for Biotechnology Information, 2023)
Dodemorph	\checkmark	\checkmark		C ₁₈ H ₃₅ NO	282.2793	Organic Amino	(National Center for Biotechnology Information, 2023)
1-Monopalmitin	\checkmark			C19H38O4	331.2828	Fatty Acid	METLIN Database
1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero- 3-phosphoethanolamine	\checkmark			C44H84NO8P	808.5838	Fatty Acid	(National Center for Biotechnology Information, 2023)
Astrophylline	\checkmark	\checkmark		C19H26N2O	337.167	Lignan	(National Center for Biotechnology Information, 2023)
Heneicosanedioic acid	\checkmark		\checkmark	$C_{21}H_{40}O_4$	357.2992	Fatty Acid	(National Center for Biotechnology Information, 2006)
Dihydrotachysterol	\checkmark	\checkmark		C28H46O	421.3457	Triterpenoids	METLIN Database
2,4,12-Octadecatrienoic acid isobutylamide	\checkmark			C22H39NO	334.3103	Fatty Acid	(National Center for Biotechnology Information, 2009)
Squamocin L	\checkmark			C37H66O6	629.4763	Organooxygen	(National Center for Biotechnology Information, 2005)
Pyrimidifen	\checkmark		\checkmark	C20H28ClN3O2	395.2209	Organic Amino	(National Center for Biotechnology Information, 2006)
N-stearoyl valine	\checkmark	\checkmark	\checkmark	C23H45NO3	384.3456	Fatty Acid	(National Center for Biotechnology Information, 2007)
Stearamide	\checkmark		\checkmark	C ₁₈ H ₃₇ NO	284.2949	Fatty Acid	(National Center for Biotechnology Information, 2005)
Schleicherastatin 3	\checkmark			C29H50O3	469.366	Steroids	(Human Metabolome Database, 2012)
Cholesteryl acetate	\checkmark			C29H48O2	429.3733	Steroids	(National Center for Biotechnology Information, 2005)
1-Tetradecanoyl-2-(7Z,10Z,13Z,16Z,19Z- docosapentaenoyl)-sn-glycerol	\checkmark			C ₃₅ H ₆₆ O ₅	589.4818	Fatty Acid	(National Center for Biotechnology Information, 2011)
1-(9Z-Tetradecenoyl)-2- (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-	\checkmark			C39H64O5	613.4835	Fatty Acid	(National Center for Biotechnology Information, 2012)

glycerol							
10-Oxo-nonadecanoic acid			\checkmark	C19H36O3	313.2732	Fatty Acid	(National Center for Biotechnology Information, 2006)
Glycerol 2-(9Z,12Z-octadecadienoate) 1- hexadecanoate 3-O-[alpha-D- galactopyranosyl-(1-6)-beta-D- galactopyranoside]	\checkmark			C49H88O15	934.6449	Fatty Acid	(FooDB, 2010)
10,11-Epoxy-3,7,11-trimethyl-2 <i>E</i> ,6 <i>E</i> -tridecadienoic acid				C16H26O3	555.3667	Monoterpenoid	(National Library of Medicine, 2005)
Ganoderiol I				C31H50O5	525.3547	Triterpenoid	(National Center for Biotechnology Information, 2007)
Euphornin				C33H44O9	607.2888	Terpenoids	(National Center for Biotechnology Information, 2007)
4-Keto-γ-carotene/ Keto-γ-carotene			\checkmark	C40H54O	551.4249	Terpenoids	(National Center for Biotechnology Information, 2007)
1-Myristoyl-2-meadoyl-sn-glycerol				C37H66O5	613.4809	Fatty Acid	(National Center for Biotechnology Information, 2011)
1,2-Di-(9Z,12Z,15Z-octadecatrienoyl)-3- (Galactosyl-alpha-1-6-Galactosyl-beta-1)- glycerol	\checkmark	\checkmark	\checkmark	C ₅₁ H ₈₄ O ₁₅	954.6114	Organooxygen	(National Center for Biotechnology Information, 2011)
6Z,9Z-Eicosadien-11-ol			\checkmark	C ₂₀ H ₃₈ O	312.3255	Fatty Acid	METLIN Database
6-Deoxodolichosterone				C ₂₈ H ₄₈ O ₄	471.3457	Terpenoids	(National Center for Biotechnology Information, 2007)
3α,12α-Dihydroxy-5β-chol-8(14)-en-24-oic Acid			\checkmark	C24H38O4	391.2840	Fatty Acid	(National Center for Biotechnology Information, 2006)
Myricetin 3-O-(4"-O-acetyl-2"-O-galloyl)- alpha-L-rhamnopyranoside	\checkmark			C ₃₀ H ₂₆ O ₁₇	676.1520	Flavonoids	METLIN Database
N-Cyclohexanecarbonylpentadecylamine	\checkmark	\checkmark	\checkmark	C ₂₂ H ₄₃ NO	338.3416	Fatty acid	National Center for Biotechnology Information, 2011
35-Aminobacteriohopane-31,32,33,34-tetrol	\checkmark			C35H63NO4	562.4817	Terpenes	National Center for Biotechnology Information, 2015
1,2-Dichloropropane		\checkmark		C3H6C12	130.018	Organochalcogen	National Center for Biotechnology Information, 2005
3-Methoxy-4,5-methylenedioxybenzoic acid				C9H8O5	219.0270	Phenolic	Human Metabolome Database, 2012
Nigerose (Sakebiose)			\checkmark	C12H22O11	381.0794	Organooxygen	National Center for Biotechnology Information, 2005
L-Galactose			\checkmark	C6H12O6	203.0526	Organooxygen	National Center for Biotechnology Information, 2004
D-(+)-Cellobiose				C12H22O11	365.1055	Organooxygen	National Center for Biotechnology Information, 2005

D-Proline	\checkmark		C5H9NO2	116.0704	Organic Amino	National Center for Biotechnology Information, 2004
3-Hydroxy-3-methyl-glutaric acid	\checkmark	\checkmark	C6H10O5	180.0856	Organic Hydroxy	National Center for Biotechnology Information, 2004
Arginyl-Proline	\checkmark	\checkmark	$C_{11}H_{21}N_5O_3$	294.1538	Organic Amino	National Center for Biotechnology Information, 2005
Quinacetol	\checkmark		$C_{11}H_9NO_2$	205.0970	Alkaloids	METLIN Database
Cyanidin 5-O-glucoside	V	\checkmark	C ₂₁ H ₂₁ O ₁₁	449.1075	Flavonoids	National Center for Biotechnology Information, 2007
Malvidin 3-rutinoside	\checkmark	\checkmark	C29H35O16	639.1938	Anthocyanidin	National Center for Biotechnology Information, 2009
Oenin	\checkmark		C ₂₃ H ₂₅ O ₁₂	493.1347	Flavonoids	National Center for Biotechnology Information, 2005
Diospyrin	\checkmark		C ₂₁ H ₂₄ O ₁₃	485.1272	Organic Hydroxy	National Center for Biotechnology Information, 2005
9,10-Epoxyoctadecatrienoic acid	\checkmark		C18H28O3	293.2105	Fatty Acid	National Center for Biotechnology Information, 2007
Malvidin 3- (6"-p-coumarylglucoside) -5- (2"'-acetylxyloside)	\checkmark		C39H41O19	813.2202	Flavonoids	METLIN Database
6-Desmethoxy hormothamnione diacetate	\checkmark		C25H24O10	485.1439	Chalcone	METLIN Database
5Z,8Z,11Z,14Z-Octadecatetraenoic acid	V		C18H28O2	277.2157	Fatty Acid	National Center for Biotechnology Information, 2006
N,N,N-trimethyl-sphingosine	\checkmark	\checkmark	C21H44N O2	293.2117	Fatty Acid	National Center for Biotechnology Information, 2007
13-Beta-D-Glucosyloxydocosanoate	\checkmark		C ₂₈ H ₅₄ O ₈	342.3374	Fatty Acid	National Center for Biotechnology Information, 2006
2-monorglyceride	\checkmark		$C_{21}H_{36}O_4$	353.2680	Organochalcogen	Europian Bioinformatics Institute, 2022
Pipericine	\checkmark		C ₂₂ H ₄₁ NO	336.3260	Fatty Acid	National Center for Biotechnology Information, 2006
4Z-Decenyl acetate	\checkmark		$C_{12}H_{22}O_2$	199.1684	Fatty Acid	National Center for Biotechnology Information, 2005
10E,12E,14E-Hexadecatrienyl acetate	\checkmark		C18H30O2	279.2306	Fatty Acid	National Center for Biotechnology Information, 2007
1-Linoleoyl Glycerol	\checkmark		$C_{21}H_{38}O_4$	355.2830	Fatty Acid	METLIN Database
Kanokoside D			C ₂₇ H ₄₄ O ₁₆	625.2692	Terpenoid	National Center for Biotechnology Information, 2010
6E,9E-Octadecadienoic acid	\checkmark		C18H32O2	281.2471	Lipid (Fatty Acid)	Europian Bioinformatics Institute, 2023
Dihydrostreptomycin 6-phosphate			C28H46O	702.2117	Organic Hydroxy	National Center for Biotechnology Information, 2004

15Z-Docosenoic acid	\checkmark	\checkmark	C22H42O2	339.3266	Fatty Acid	National Center for Biotechnology Information, 2006
Prostaglandin f1alpha	\checkmark		C20H36O5	395.2183	Fatty Acid	National Center for Biotechnology Information, 2005
Stearamide	\checkmark		C ₁₈ H ₃₇ NO	284.2947	Fatty Acid	National Center for Biotechnology Information, 2005
1-Monoacylglyceride	\checkmark		C27H52O4	441.3934	Fatty Acid	Human Metabolome Database, 2009
Lansioside C	\checkmark	\checkmark	C35H56O7	589.4095	Organochalcogen	National Center for Biotechnology Information, 2014
Docosanedioic acid	\checkmark	\checkmark	C22H42O4	371.3152	Fatty Acid	National Center for Biotechnology Information, 2005
Tetracosanedioic acid	\checkmark		C24H46O4	416.3732	Fatty Acid	National Center for Biotechnology Information, 2005
Glycyl-glycine		\checkmark	C4H8N2O3	133.0605	Organic Amino	National Center for Biotechnology Information, 2004
3-Acetamidopropanal		\checkmark	C ₅ H ₉ NO ₂	116.0703	Oganonitrogen	National Center for Biotechnology Information, 2004
Cortisol 21-sulfate		\checkmark	$C_{21}H_{30}O_8S$	460.1989	Fatty Acid	National Center for Biotechnology Information, 2004
Isoamyl nitrite		\checkmark	C5H11NO2	118.0864	Nitrites	National Center for Biotechnology Information, 2005
Pyroglutamic acid		\checkmark	C5H7NO3	130.0503	Organic Amino	National Center for Biotechnology Information, 2004
Miserotoxin			C9H17NO8	268.1028	Organochalcogen	National Center for Biotechnology Information, 2005
Gambiriin B2		\checkmark	C30H26O11	563.1567	Organic Hydroxy	National Center for Biotechnology Information, 2007
Peonidin 3-galactoside		\checkmark	C22H23O11	463.1238	Anthocyanidin	METLIN Database
Guibourtinidol-4alpha-ol		\checkmark	$C_{15}H_{14}O_5$	275.0912	-	METLIN Database
Guibourtinidol-(4alpha-6)-catechin		\checkmark	C ₃₀ H ₂₆ O ₁₀	547.1605	Phenols (Tannin)	National Center for Biotechnology Information, 2005
Rhamnetin 3-rhamnosyl-(1-3)(4"'- acetylrhamnosyl)(1-6)-galactoside		\checkmark	C36H44O21	835.2267	Flavonoids	METLIN Database
Acacetin 7-O-[6"-O-glucosyl-2"-O-(3"- acetylrhamnosyl)glucoside		\checkmark	$C_{36}H_{44}O_{20}$	819.2292	Flavonoids	METLIN Database
Ryanodine		\checkmark	C25H35NO9	494.2375	Alkaloid	National Center for Biotechnology Information, 2006
Chaetochromin		\checkmark	C30H26O10	547.1577	Heterocyclic	National Center for Biotechnology Information, 2005

Hirsutidin	\checkmark	C ₁₈ H ₁₇ O ₇	345.0982	Lipid	National Center for Biotechnology Information, 2005
Quercetin 5,7,3',4'-tetramethyl ether 3- rutinoside	\checkmark	C31H38O16	689.2065	Flavonoids	Human Metabolome Database, 2012
Haginin A	\checkmark	$C_{17}H_{16}O_5$	323.0896	Flavonoids	National Center for Biotechnology Information, 2005
3Z,6Z,9Z,12Z,15Z-Octadecapentaenoic acid	\checkmark	C18H26O2	275.2004	Fatty Acid	National Center for Biotechnology Information, 2006
9,10-Epoxyoctadecatrienoic acid	\checkmark	$C_{18}H_{28}O_3$	293.2104	Fatty Acid	National Center for Biotechnology Information, 2008
11-hydroperoxy-12,13-epoxy-9-octadecenoic acid	\checkmark	C ₁₈ H ₃₂ O ₅	346.2587	Fatty Acid	National Center for Biotechnology Information, 2006
D-Galactopyranosyl-(1-3)-D- galactopyranosyl-(1-3)-L-arabinose	\checkmark	$C_{17}H_{30}O_{15}$	497.1470	Organochalcogen	National Center for Biotechnology Information, 2017
Ciliatin A	\checkmark	C ₂₀ H ₁₆ O ₅	337.1063	Flavonoids	National Center for Biotechnology Information, 2009
Epicatechin 5-O-beta-D-glucopyranoside-3- benzoate	\checkmark	$C_{28}H_{28}O_{12}$	557.1653	Flavonoids	National Center for Biotechnology Information, 2009
Prosafrinine	\checkmark	C17H33NO2	301.2853	Fatty Acid	National Center for Biotechnology Information, 2009
C17-Sphinganine	\checkmark	C17H37NO2	288.2906	Organic Amino	National Center for Biotechnology Information, 2014
(-)-Matairesinol 4'-[apiosyl-(1->2)-glucoside]	\checkmark	C31H40O15	691.2014	Organochalcogen	National Center for Biotechnology Information, 2014
Vitexin 2"-O-rhamnoside 6"-acetate	\checkmark	C29H32O15	643.1624	Flavonoids	National Center for Biotechnology Information, 2009
(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1- 4)-a-L-rhamnopyranosyl-(1-2)-b-D- glucopyranoside]	1	C ₃₃ H ₅₆ O ₁₄	694.4013	Organochalcogen	National Center for Biotechnology Information, 2007
Terminaline	\checkmark	C ₂₃ H ₄₁ NO ₂	364.3218	Alkaloids	National Center for Biotechnology Information, 2005
1-(2E,4E-octadecadienoyl)-sn-glycero-3- phosphocoline	\checkmark	C ₂₆ H ₅₁ NO ₇ P	520.3395	Fatty Acid	National Center for Biotechnology Information, 2008
5(S)-HETE lactone	\checkmark	C20H30O2	303.2311	Fatty Acid	METLIN Database
2-Hydroxyhexadecanoic acid	\checkmark	C ₁₆ H ₃₂ O ₃	295.2255	Fatty Acid	National Center for Biotechnology Information, 2005
12-Tricosanol	\checkmark	C23H48O	379.3348	Fatty Acid	National Center for Biotechnology Information, 2005
1-Monoacylglyceride	\checkmark	C21H36O4	353.2681	Fatty Acid	Human Metabolome Database, 2009
N,N-dimethyl-Safingol	\checkmark	C20H43NO2	352.3196	Fatty Acid	National Center for Biotechnology Information, 2009

Glycero-3-phosphocholine	\checkmark	C46H83NO8P	808.5833	Fatty Acid	National Center for Biotechnology Information, 2011
Phosphoethanolamine	\checkmark	C42 H82 N O8 P	760.5827	Fatty Acid	National Center for Biotechnology Information, 2006
1-Oleyl-2-arachidonoyl-sn-glycero-3- phosphocholine	\checkmark	C46 H83 N O8 P	808.5867	Fatty Acid	National Center for Biotechnology Information, 2008
1-Monoacylglyceride	\checkmark	C27 H52 O4	441.3920	Fatty Acid	Human Metabolome Database, 2009)
3E,13Z-Octadecadienyl acetate	\checkmark	C ₂₀ H ₃₆ O ₂	309.2781	Fatty Acid	National Center for Biotechnology Information, 2005
Coroloside	\checkmark	C35 H54 O12	684.3967	Steroid	National Center for Biotechnology Information, 2005
Coenzyme Q6	\checkmark	C39 H58 O4	613.4219	Organochaclogen	National Center for Biotechnology Information, 2005
(3 <i>S</i> ,5 <i>R</i> ,8 <i>R</i> ,3' <i>R</i>)-Mutatoxanthin	\checkmark	C40 H56 O3	585.4295	Terpenoids	National Center for Biotechnology Information, 2007
17,20-dimethyl Prostaglandin F1α	\checkmark	C22 H40 O5	423.2511	Fatty Acid	National Center for Biotechnology Information, 2013
10Z,13Z-Nonadecadienoic acid	\checkmark	C19 H34 O2	295.2631	Fatty Acid	National Center for Biotechnology Information, 2006

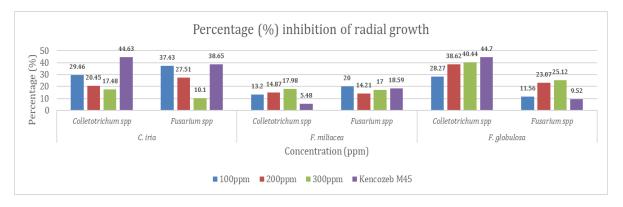


Figure 1. Percentage inhibition of radial growth of *C. iria, F. miliacea and F. globulosa* against *Colletotrichum* spp. and *Fusarium* spp.

Minimum Inhibition Concentration (MIC) and Minimum Fungicidal Concentration (MFC)

The MIC was determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI). The inoculum concentration was determined to approximately 10⁴ CFU/mL. Sample extracts with concentration of 10 mg/mL were mixed and two-folds diluted in medium containing inoculum. The sample extract containing the highest concentration (5 mg/mL) was placed in Column 12 while the lowest concentration (0.0097 mg/mL) was placed in Column 3. Negative control which consists of only medium with no inoculum and no antimicrobial agent was placed in Column 1. Whereas positive control which consists of sterile broth was placed in Column 2 for 24 hours. The lowest concentration that managed to inhibit microbial growth was defined as MIC. To evaluate fungicidal concentration (MFC), a loop from each concentration which showed the inhibition of the fungus was inoculated onto Potato Dextrose Agar (PDA) and incubated for 5-7 days.

RESULTS AND DISCUSSION

Compounds identification by LC-MS showed 131, 60, and 95 compounds for C. iria, F. miliacea, and F. globulosa respectively (Table 1). Most of the compounds detected were flavonoids and terpenoids. These findings are similar to [12, 13], which stated that there is the presence of terpenoids emitted from leaves part of C. iria which have been reported to have antifungal effect on various species [14] and the presence of flavonoids from the root part of C. iria. Flavonoids content from F. miliacea were supported by previous findings where they possess strong antidiarrheal effect [15]. Results for F. globulosa can be supported by [16] which stated the presence of flavonoids in the methanolic extract of the plant. However, to the best of our knowledge, there is no extensive report on the phytochemical properties of F. globulosa.

Results for antifungal activity by agar well diffusion assay showed potential activities towards both Colletotrichum spp. and Fusarium spp (Figure 1). The highest value was observed with Kencozeb M45 at 44.63% for Colletotrichum spp and 38.65% for Fusarium spp. followed by methanolic extract of C. iria at 29.46% and 37.43% for both Colletotrichum spp. and *Fusarium* spp respectively. The lowest was observed with negative control (distilled water) at 0 for both fungi. Extracts for F. miliacea showed potential activities towards both Colletotrichum spp. and Fusarium spp. The highest value was observed at 300 ppm with 17.98% for Colletotrichum spp. and Kencozeb M45 at 18.59% for Fusarium spp. respectively. F. miliacea extract exhibited the second highest value at 14.87% and 14.21% for Colletotrichum spp. and *Fusarium* spp respectively. The lowest value was observed with negative control (distilled water) with no inhibition growth and 12.72% for Colletotrichum spp. and Fusarium spp. respectively.

The highest value for *F. globulosa* extract was observed with Kencozeb M45 at 44.7% for Colletotrichum spp and at 300 ppm of F. globulosa extract with 25.12% for Fusarium spp. respectively. The lowest value was observed with negative control (distilled water) with no inhibition growth. Both MIC and MFC values were determined by broth microdilution assay (Table 2). The MIC value for Colletotrichum spp. was at 125 ug/mL and MFC value at 250 ug/mL for all tested samples. Fusarium spp. showed MIC value at 125 ug/mL and MFC value at 250 ug/mL for C. iria and F. miliacea. F. globulosa showed MIC value of 250 ug/mL and MFC value of 500 ug/mL. Antifungal activity against Colletotrichum spp. showed MIC and MFC values of 125 ug/mL and 250 ug/mL, respectively. Antifungal activity against Fusarium spp. showed moderate to good activity with MIC and MFC value of 250 ug/mL for C. iria and F. miliacea, respectively, while moderate antifungal activity for F. globulosa with MIC value of 250 ug/mL and MFC value of 500 ug/mL.

Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis and Antifungal Potential of *Cyperus iria*, *Fimbristylis miliacea*, and *Fimbristylis globulosa*

Extract	Fungus	MIC (ug/mL)	MFC (ug/mL)	
C. iria	Colletotrichum spp.	125	250	
	Fusarium spp.	125	250	
F. miliacea	Colletotrichum spp.	125	250	
	Fusarium spp.	125	250	
F. globulosa	Colletotrichum spp.	125	250	
	Fusarium spp.	250	500	

Table 2. MIC and MFC of tested plant extracts against pathogenic fungi.

MIC and MFC of all tested extracts showed moderate to good antifungal activity for all tested samples against both fungi suspension. The antifungal activity for C. iria and F. miliacea can be attributed with the presence of flavonoids and terpenoids based on the LC-MS analysis and previous studies [12-15]. However, to the best of our knowledge, this is the first study on the antifungal activity of F. globulosa against Colletotrichum spp. and Fusarium spp. Based on previous study by [17], most of the reported national potentiators for antifungal are polyphenols and terpenes. They also stated that there were previous studies that showed the potential of antifungal activity which were related to the presence of secondary metabolites such as terpenes. However, the mechanism on how terpenes work to inhibit the fungal growth is still unknown.

CONCLUSION

Plants produced secondary metabolites in response to the pathogens' attack. Terpenoids and flavonoids played a crucial role in plant defence mechanisms and displayed antimicrobial and antifungal activities [12, 18]. Previous study confirms the potential of antifungal activity of *C. iria*, *F. glubulosa* and F. *miliacea*. However, further research needs to be done to further understand the mechanism of secondary metabolites in Cyperaceae against antifungal activity.

ACKNOWLEDGEMENTS

The present work was financially supported by the Fundamental Research Grant Scheme 600-IRMI/FRGS 5/3 (040/2019) and the fee ICNP 2023 conference from IPSis (Institute of Postgraduate Studies UiTM).

REFERENCES

- 1. Bryson, C. T. & Carter, R. (2008) *Missouri* Botanical Garden Press; First Edition, **298**.
- Verloove, F., Laguna L. E. & Ferrer, G. P. (2014) Some potentially weedy Cyperaceae new to Spain. *Flora Mediterranea*, 24, 197–205.
- 3. Rafat, B. Z. (2019) Phytochemical analysis of

certain species of *Cyperus* L. and *Kyllinga* Rottb. (Cyperaceae) in Nanded district.

- Marimoto, M., Fujii, Y. & Komai, K. (1999) Antifeedants in Cyperaceae: coumaran and quinones from Cyperus spp. *Phytochemistry*, 51, 605–608.
- Abo-Altemen, R. A., Al-Shammari, A. M. and Shawkat, M. S. (2019) *Energy Procedia*, 1462– 1474.
- Erdem, B., Bagci, E., Dogan, G., Aktoklu, E. & Dayangac, A. (2018) Chemical composition and antimicrobial activities of essential oil and ethanol extract of Cyperus fuscus L burs from Turkey. *Tropical Journal of Pharmaceutical Research*, 8(1), 293–296.
- Gamal, M. A., Hani, K. M. K. & Sabrin, I. R. M. (2015) A Review: Compounds Isolated from Cyperus Species (Part II): Terpenoidal. *International Journal of Pharmacognosy and Phytochemical Research*, 7(1), 83–99.
- Desjardins, A. E., Manandhar, H. K., Plattner, R. D., Manandhar, G. G., Poling, S. M. & Maragos, C. M. (1999) *Fusarium* Species from Nepalese Rice and Production of Mycotoxins and Gibberellic Acid by Selected Species. *Applied And Environmental Microbiology*, 66(3), 1020–1025.
- Schöneberg, T., Kibler, K., Sulyok, M., Musa, T., Bucheli, T. D., Mascher, F., Bertossa, M., Voegele, R. T. & Vogelgsang, S. (2018) Can plant phenolic compounds reduce Fusarium growth and mycotoxin production in cereals? *Food Additives & Contaminants:* Part A, 35(12), 2455–2470.
- Xu, H., Wang, G., Zhang, J., Zhang, M., Fu, M., Xiang, K., Zhang, M. & Chen, X. (2022) Identification of phenolic compounds and active antifungal ingredients of walnut in response to anthracnose (*Colletotrichum gloeosporioides*). *Postharvest Biology and Technology*, **192**.
- 11. Hu, S., Zhang, Y., Yu, H., Zhou, J., Hu, M., Liu, A. & Zhang, C. (2022) Colletotrichum Spp.

> Diversity Between Leaf Anthracnose and Crown Rot from The Same Strawberry Plant. *Frontiers in Microbiology*, **13**.

- Jiang, Y., Ownley, B. H. & Chen, F. (2018) Terpenoids from Weedy Ricefield Flatsedge (Cyperus iria L.) Are Developmentally Regulated and Stress-Induced, and have Antifungal Properties. *Molecules*, 23, 3149.
- Vera, P. J. D. D., Tayone, J. C. & Llagas, M. C. S. D. L. (2022) Cyperus iria linn. Roots ethanol extract: its phytochemicals, cytotoxicity, and anti-inflammatory activity. *Journal of Taibah University for Science*, 16(1), 854–862.
- 14. Scortichini, M. and Rossi, M. P. (1991) Preliminary in vitro evaluation of the antimicrobial activity of terpenes and terpenoids towards *Erwinia amylovora* (Burrill). Journal of Applied Bacteriology, **71**, 109–112.
- Mukta, U. H., Roy, R., Daula, A. F. M. S. U., Ferdous, M., Chowdhury, A., Mia, S., Akter, A., Liya, I. J. and Basher, M. A. (2020) Phytochemical analysis, antioxidant and antidiarrhoeal activities of methanol extract of *Fimbristylis miliacea* (L.) Vahl. *Journal of Pharmacognosy and Phytotherapy*, 12(1), 10–18.

- Abdullah, N. A. B., Zain, W. Z. W. M., Wahida, N., Ramli, B., Nur, A. B. H., Aziman, N. B. & Salim, F. (2021) Antioxidant Activity, Total Phenolic Content, Total Flavonoid Content and Phytochemical Screening of Cyperus iria, Cyperus distans, Fimbristylis miliacea, Fimbristylis dichotoma, and Fimbristylis globulosa. In 1st Postgraduate Seminar on Agriculture and Forestry 2021 (PSAF 2021), 18.
- Susana, A. Z., Estefania, B., Melina, D. L., Marcela, R., Agustina, P. & Maximiliano, S. (2017) Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. *Phytomedicine*, 37, 27–48.
- Perveen, S. (2018) Introductory chapter: terpenes and terpenoids. In S. Perveen, & A. Al-Taweel, *Terpenes and terpenoids*. Saudi Arabia: IntechOpen. Retrieved from https://www.intechopen.com/books/ terpenes-and-terpenoids/introductory-chapterterpenes-and-terpenoids.
- Sukor, N. S. M., Zakri, Z. H. M., Rasol, N. E. & Salim, F. (2023) Annotation and identification of phytochemicals from Eleusine indica using high-performance liquid chromatography tandem mass spectrometry: databases-driven approach. *Molecules*, 28(7).