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A new immobilized Z-scheme heterojunction of Ag2O/Ag doped TiO2 using a reverse technique 

to prevent excess chemical usage was prepared by immobilizing TiO2 prior to doping with silver 

and silver oxide nanoparticles by a photodeposition method using a 250-Watt fluorescent lamp 

irradiation process for 60 min. TiO2 was coated onto double-sided adhesive tape (DSAT) using 

the brush technique, and a glass plate measuring 10 x 1.5 x 0.2 cm (L x H x B) was used as the 

support material for immobilization. Reactive Red 4 (RR4) dye was used as a model pollutant to 

measure the photocatalytic activity of the prepared immobilized Ag2O/Ag-TiO2. Characterization 

was performed by X-ray diffraction, photoluminescence, UV-vis diffuse reflectance spectroscopy 

and FESEM equipped with energy dispersive X-ray analysis (EDX). The results showed that Z-

scheme heterojunctions of Ag2O/Ag-TiO2 significantly enhanced photocatalytic degradation 

compared to the N-type TiO2 microsphere. In comparison with pure TiO2, the modified 

composite photocatalyst exhibited higher photocatalytic activity under visible light irradiation 

in the decomposition of RR4 in aqueous solution. The photocatalytic degradation followed the 

pseudo-first-order reaction model. The heterostructure with a 3 % molar ratio of TiO 2 and 

AgNO3 exhibited the best photocatalytic activity with an apparent first-order rate constant of 

0.321 min–1.  
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With the growth of the industrial sector, the amount of 

wastewater generated as a by-product has also increased. 

Physical separation, for example, cannot be used for 

wastewater from the textile industry because it contains 

hydrophilic organic compounds. Without appropriate 

treatment, these organic compounds are discharged into 

water bodies (Kouhail et al., 2020). Wastewater from 

the textile industry includes a high concentration of 

toxic recalcitrant colouring pollutants, dissolved solids 

and toxic materials that can persist in the environment 

for long periods of time (Kishor et al., 2021). Moreover, 

reactive dyes in organic wastewater make water 

remediation more challenging. There are several  

chemical approaches for wastewater treatment . 

However, photocatalysis has garnered considerable 

attention from researchers as it offers low-cost treatment, 

complete degradation, and eco-friendliness. Photo-

catalysis is a potential treatment method that can degrade 

organic pollutants (dyes) using a redox reaction  

technique (Kouhail et al., 2020). In this process, organic 

pollutants are oxidized and reduced simultaneously, 

transforming them into carbon dioxide (CO2) and water 

(H2O). Titanium dioxide (TiO2), zinc oxide (ZnO), 

ferric oxide (Fe2O3) and other semiconductor materials 

work as photocatalysts for various applications (Gilja 

et al., 2018). TiO2 is one of the most commonly used 

photocatalyst materials (Gomes et al., 2018; Komaraiah 

et al., 2020; Arekhi & Jamshidi, 2018). It is known for 

its non-toxic behaviour, low cost, and sturdy applicability 

for the photocatalytic degradation (PCD) of organic 

pollutants. It is important to emphasize that TiO2 is an 

n-type semiconductor with a high energy band gap 

(Eg) of 3.2 eV. However, the photocatalytic activity of 

TiO2 is limited due to the high band gap energy, high 

recombination of the photogenerated electron-hole pair 

(e-/h+), wide electron trapping and lack of surface-

active sites (Varma et al., 2020). Thus, modification of 

TiO2 is crucial to create a more stable charge carrier 

separation and electron movement that can enhance its 

photocatalytic performance. Many attempts have 

been made to improve the photocatalytic efficacy of 

mesoporous TiO2 by decorating the surface with metals 

(Ag, Pt, Pd) and non-metals (C, N, P). However, 

although the visible light absorption can be improved, 

TiO2's efficacy as an oxidation photocatalyst is still 

relatively low. Hence, combining TiO2 with another 
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semiconductor is a viable alternative to provide a new 

route of charge transfer through the junction created 

between both semiconductors. A heterojunction system 

can not only improve charge carrier transfer but has 

also been widely applied to expedite the degradation 

process and enhance the photoefficiency for the  

oxidation of dyes under moderate light energy.  

Recently, the metal oxide Ag2O, which has a narrow 

band gap (Eg = 1.0-1.46 eV) and a known stability, 

was found to match well with TiO2 due to their band 

gap structures. Together, they created a p-n hetero-

junction system, that resulted in enhanced light  

absorption and accumulation of photogenerated e-/h+ 

pairs separation. This was demonstrated by the high 

stability of the Ag2O/TiO2 system in the photo-

destruction of dyes under visible light illumination, 

which was linked to the participation of Ag2O–TiO2 

surface p-n junctions that facilitated electron transfer 

between semiconductors, as shown in Figure 1. 

 

Recently, the use of Ag2O-TiO2 suspensions 

has become the standard approach for wastewater 

remediation due to its high surface-to-volume ratio 

(Razak et al., 2014). However, this results in the treated 

wastewater being in a slurry form, requiring a filtration 

process. As a result, Ag2O-TiO2 cannot be reused, 

making it impractical for commercial applications. 

TiO2 immobilization was introduced to eliminate the 

post-treatment filtration process and make TiO2 

reusable. Previously, the conventional method used 

self-sedimentation, in which the treatment required the 

use of alum (aluminium sulphate) as the coagulant 

(Jagaba et al., 2018). This was not practical as it required 

many post-treatment steps and had a very high cost 

due to the chemicals used. Moreover, these may also 

produce harmful by-products.  

 

TiO2 immobilization involves applying a photo- 

catalyst onto a solid support material to hold them 

together (Ismail et al., 2015). Some researchers have 

used polymer binders due to their strong adhesion with 

immobilized TiO2. However, an excessive amount of 

polymer has the drawback of reducing the contact 

surface of TiO2 with pollutants (Ismail et al., 2015). 

Hence, the TiO2 immobilization technique is more 

favourable as it eliminates the need for post-treatment 

filtration. However, the use of immobilized TiO2 is 

still not practical due to interference from excessive 

polymer binders. 

 

Double-sided adhesive tape (DSAT) has been 

introduced as the most effective alternative to polymer 

matrix binders in the TiO2 immobilization system. DSAT 

shows great potential for replacing polymer binders in 

the immobilization system. It possesses good  

characteristics such as being waterproof, long-lasting, 

and having strong adhesion with various materials 

(Ismail et al., 2015). The typical preparation technique 

for immobilized TiO2 involves modifying Ag2O- TiO2 

in a slurry form using TiO2 powder and then coating it 

using the immobilization technique, typically brushing. 

Immobilized Ag2O-TiO2 has shown better photocatalytic 

activity compared to immobilized unmodified TiO2 

using the conventional technique. Immobilized Ag2O-

TiO2 is commonly prepared via photodeposition prior to 

immobilization. However, a few studies have reported 

that the interaction of the prepared Ag2O-TiO2 powder 

with solvents during the immobilization process  

reduces its photocatalytic performance. Hence, 

avoiding solvent usage during immobilization is vital to 

minimize chemical interactions. Therefore, using the 

DSAT technique prior to doping with Ag2O is the best 

method for preparing immobilized Ag2O-TiO2. 

 
 

Figure 1.  Proposed mechanism of p-n heterojunction of Ag2O-TiO2. 
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EXPERIMENTAL 

 

Chemicals and Materials 

 

TiO2 powder (Degussa P25, 20% rutile, 80% anatase) 

was supplied by Merck, distilled/deionized water was 

used as the solvent for all experiments, Reactive Red-

4 dye powder, purchased from Sigma-Aldrich, was 

used as a model pollutant. Polyvinyl alcohol (PVA) 

provided by R&M was used as a matrix adding  

solution, and silver nitrate from QRec (AgNO3) was 

used as a Ag precursor.  

 

A glass plate measuring 10 x 1.5 x 0.2 cm (L x 

H x B) was used as a support material for TiO2 

immobilization. A 55-Watt fluorescent lamp model 

Firefly/E27 was used during the irradiation process. A 

250 mL Schott bottle was used to store the TiO2 

formulation. Double sided Adhesion Tape (DSAT) 

from Newstar was used as the main binder to hold the 

TiO2 nanoparticles. A multifunctional orbital shaker 

from Grant-bio was used to shake the formulation. 

 

Preparation of Immobilized TiO2 

 

About 6.5 g of TiO2 powder (P25, Degussa, 80% 

anatase and 20% rutile) was added to 40 mL of 

distilled water in a 250 mL reagent bottle and stirred 

for a few seconds. Then, about 1 ml of PVA (8%) was 

added, and the TiO2 mixture was put through a shaking 

process for 5 minutes to make sure it was in the form 

of a homogenized white solution. After that, DSAT 

was taped on the glass plate and a brush coating 

technique was used to coat the prepared TiO 2 

formulation on the taped surface. The glass plate 

coated with 0.1 g of the TiO2 formulation was dried 

under a hot air blower for 60 seconds at ± 80 ᵒC. The 

dried immobilized TiO2 was then cleaned with 

distilled water under irradiation with the fluorescent 

lamp, at 6400 K in aerated conditions for 60 minutes. 

The process was performed for 1 h prior to the silver 

doping process using the reverse method and photo-

catalytic degradation study. 

 

Preparation of Immobilized Ag/Ag2O-TiO2 

 

Immobilized Ag2O/Ag doped TiO2 was synthesized 

using a reverse method. Solutions containing 1 wt%, 

2 wt%, 3 wt% and 4 wt% of Ag were prepared using 

silver nitrate (AgNO3) as a Ag precursor to dope the 

immobilized TiO2. The reverse photodeposition method 

was carried out by pouring about 80 ml of a solution 

of aqueous AgNO3 in 50% of IPA into a Schlenk tube. 

The glass plate coated with immobilized TiO2 was 

hung by a thread and immersed in the solution. Then, 

the Schlenk tube was placed under vacuum for 10 

seconds followed by purging with N2 gas for 10 

seconds. This step was repeated three times. After that, 

the immobilized TiO2 and AgNO3 aqueous solution 

was irradiated with a 250-Watt metal halide lamp for 

about 1 h to form immobilized Ag2O-TiO2.  

Characterization Methods 

 

An X-ray diffractometer (RIGAKU/XRD D/MAX 

2200V/PC) with Cu Kα radiation at a wavelength of 

1.5418 Ǻ at 50 kV and a diffraction angle range of 2θ 

from 20ᵒ- 80ᵒ with a Lynx Eye detector was used to 

study the crystalline nature, phases and crystal sizes in 

the unmodified immobilized TiO2 and immobilized 

Ag2O/Ag-TiO2 (Mogal et al., 2014; Estephane & El 

Jamal, 2019). A Hitachi SU8020 FESEM instrument 

equipped with Energy Dispersive X-Ray analysis 

(EDX) was utilized primarily to determine the surface 

morphology of the unmodified immobilized TiO2 

and immobilized Ag2O/Ag -TiO2 particles and the 

dispersion of metals on the catalyst surface (Mogal et 

al., 2014). The EDX analysis was performed randomly 

at points selected from the SEM analysis. About 20 kV 

of accelerating potential was used during the analysis. 

High-resolution TEM (HRTEM) images of the  

samples were taken by a JEOL-2100 instrument 

operated at an accelerating voltage of 200 kV. The 

samples were characterized with a Fourier Transform 

Infrared – Attenuated Total Reflectance (FTIR – 

ATR) instrument (Perkin-Elmer, model system 2000 

FTIR) to determine the functional group or bonds in 

TiO2 and Ag2O/Ag-TiO2 (1wt%, 2 wt%, 3 wt%, 4%). 

The absorbance from the photocatalytic degradation 

of RR4 was analysed by UV – Vis spectroscopy at 517 

nm. Photoluminescence (PL) analysis was carried out 

using a Cary Eclipse Fluorescence Spectrophotometer 

with a xenon lamp. The UV-vis diffuse reflectance 

spectra were recorded using a UV-vis-near-infrared 

(NIR) spectrophotometer (Agilent, Cary 5000) in the 

range of 200-800 nm. 

 

Photocatalytic Degradation of Ag/Ag2O-TiO2 

 

About 12 ml of a 30 ppm solution of the anionic  

RR4 dye was poured into a custom glass cell with 

dimensions of 2 cm x 8 cm x 1.2 cm (L x H x B). The 

prepared immobilized Ag2O-TiO2 was then immersed 

in this solution. The solution was radiated with the 

fluorescent lamp for 15 min until the dye solution 

turned completely colourless. An aerator source, an 

aquarium pump model NS 7200, was used to supply 

oxygen for the reaction at 15 mL/min. A HACH 

DR 1900 spectrometer was used to determine the 

percentage of decolourization of RR4 from the photo- 

degradation process at a wavelength of 517 nm. A graph 

of these values against irradiation or contact time was 

plotted to determine the k value and linear correlation 

value. The results were converted into ln Co/C where 

Co was the absorbance of the initial concentration and 

C was the absorbance at any time (t). Based on the 

Langmuir-Hinshelwood rate model, the slope of the line 

was taken as the pseudo first order rate constant.  

 

Degradation rate (%) 

 

Where 𝐶𝑂 is the initial concentration and 𝐶 is the final 

concentration.  
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Figure 2. XRD spectrum of (a) Unmodified TiO2 and modified 3% Ag2O-TiO2, (b) Physical color of 1-5% of 

Ag2O-TiO2. 

 

 

RESULTS AND DISCUSSION 

 

Characterization Study  

 

The crystalline nature of the phases present in the 

unmodified TiO2 and modified Ag2O-TiO2 was 

studied by X-ray diffraction (XRD). The X-ray 

diffractograms of the photocatalysts are shown in 

Figure 2. The XRD patterns of both unmodified TiO2 

and Ag2O-TiO2 were comparable to JCPDS File No: 

894921. Based on the results, the XRD pattern of pure 

TiO2 was consistent with that of anatase, exhibiting 

strong diffraction peaks at (101), (004), (200), (105), 

(211), (204), (116) and (220) which were assigned to 

diffraction angles (2θ) of 25.4°, 37.8°, 48.2°, 54.0°, 

55.1°, 62.7°, 69.0° and 70.5°, respectively (JCPDS 

No. 21-1272). 

 

The XRD analysis did not identify any peaks 

indicating a phase transformation from anatase to 

rutile. This may be attributed to the fact that the 

process was carried out under low heat, below 600 °C. 

In the spectra of 3 % Ag2O-TiO2, additional peaks 

appeared at the (110) and (200) planes with diffraction 

angles of 32.5°, 39.6° and 46.5°, indicating the presence 

of Ag2O (JCPDS No. 4-0783) (Rozina et al., 2022; Oje 

et al., 2021). The cubic phase of Ag2O was found in 

the Bragg peaks of the (200) crystal plane (ICDD 

CARD number: 041-1104) (Oje et al., 2021). The 

intensity of the detected Ag2O was low due to the low 

loading of the AgNO3 precursor. Furthermore, the 

small amount of Ag used in the doping process relative 

to the amount of TiO2 on the plate resulted in no 

additional peaks from Ag, likely due to the high 

dispersion of Ag particles on the surface of TiO2 

(Komaraiah et al., 2020). It should be noted that an 

increase in the concentration of the loading precursor 

would result in a higher intensity of the peak. 

Therefore, XRD analysis confirmed that Ag2O was 

incorporated into TiO2. During the process, oxidation 

occurred, and silver nitrate was oxidized to silver 

oxide (Ag2O) during photodeposition. The reaction 

mechanism of Ag2O can be seen in Equations 1 and 2. 

The oxygen molecules in TiO2 may have also 

contributed to the oxidation of Ag to Ag2O. However, 

there was no indication of Ag doping with TiO2 in the 

XRD results. 

 

Ag+ + OH- 
→ AgOH            (1) 

 

2AgOH → Ag2O + H2O           (2) 

 

Field emission scanning electron microscopy 

(FESEM) coupled with energy-dispersive X-ray 

spectroscopy (EDX) was used to characterize the 

morphology changes in TiO2 after doping with silver 

oxide. Figures 3(a-b) and 3(c-d) depict the FESEM-

EDX images of unmodified TiO2 and 3 % Ag2O-TiO2, 
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respectively. The morphological features of TiO2 were 

almost unchanged after being modified by Ag2O, with 

spherical contours of nanoparticles clumping together 

and some small agglomerations forming microstructures. 

Based on Figures 3(a) and 3(c), it can be observed that 

3 % Ag2O-TiO2 had a darker colour and numerous 

dark spots compared to TiO2. This could indicate Ag 

or Ag2O deposition on the surface of TiO2.   

 

However, due to the small particle size of 

unmodified TiO2 and Ag2O-doped TiO2, the SEM 

resolution was inadequate to prove the deposition of 

Ag2O and TiO2 particles (Komaraiah et al., 2020). 

Therefore, elemental analysis (EDX) was used to  

identify the composition of materials present in  

unmodified TiO2 and 3 % Ag2O-TiO2, as shown in 

Figures 3(b) and 3(d), respectively. The EDX pattern 

of unmodified TiO2 showed peaks corresponding to 

the Ti and O components, while in the case of 3 % 

Ag2O-TiO2, there was a weak peak corresponding to 

the Ag component along with the Ti and O components. 

The weight percent (wt %) of Ag detected in the 3 % 

Ag2O-TiO2 was 0.6 %, as shown in Table 1. The 

presence of Ag and Ag2O on the surface of TiO2 implied 

a successful synthesis, as the EDX data confirmed the 

simultaneous deposition of Ag0 and Ag2O. 

 

 

 
 

Figure 3. FESEM and EDX images of (a)-(b) – unmodified TiO2 and (c)-(d) – modified 3% Ag2O-TiO2. 
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Table 1. Elemental analysis of synthesized nanocomposite.. 

Element       Weight (%)  Atomic (σ) 

O  46.6  0.8  

Ti  52.8  0.8  

Ag  0.6  0.4  

Total  100.0    

c) 

b) d) 

a) 
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Figure 4. HRTEM images showing the presence of (a) metallic silver Ag0, (b) d-spacing of Ag0, (c) silver oxide, 

Ag2O and (d) d-spacing of Ag2O on TiO2. 
 
 

High-resolution transmission electron micro-

scopy (HRTEM) was employed to examine the 

morphology of synthetic pure TiO2 and the Ag/Ag2O-

TiO2 heterojunction, with 3% silver loading. Figure 4 

illustrates the HRTEM images, revealing the internal 

morphological features of the Ag/Ag2O-TiO2 photo-

catalyst had various shapes, including spherical, cubic, 

and hexagonal. Overall, the images clearly show 

numerous dark spots on the TiO2 surface, indicating the 

presence of Ag2O or Ag nanoparticles. In Figure 4(c), 

the appearance of Ag2O nanoparticles on the TiO2 

surface can be observed, and in Figure 4(d), the  

HRTEM micrograph demonstrates the composite 

material formed by Ag2O, indexed as (002) with a 

spacing of d = 0.24 nm. Additionally, Figure 4(a) 

shows the presence of Ag nanoparticles, suggesting that 

Ag0 may contribute to the photocatalytic performance/ 

efficacy of this sample by acting as a dopant that exhibits 

localized surface plasmon resonance (LSPR) during 

electronic accumulation, thereby helping to reduce 

the charge recombination problem. Figure 4(b) displays 

the deposition of Ag0 on TiO2, as detected by the 

spacing of d = 0.2034 nm indexed at (200). Thus, the 

HRTEM images confirm the presence of both Ag2O 

and Ag0 on TiO2, which is consistent with the SEM 

and XRD results. 
 
 

 
 

Figure 5. FTIR spectra of unmodified TiO2 and modified Ag-TiO2. 
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Next, Figure 5 shows the FTIR spectra for the 

unmodified and modified Ag2O-TiO2 doped TiO2 

photocatalysts. It was observed that all samples  

exhibited broad peaks between 3000-3400 cm-1 that 

centred around 3262 cm-1, corresponding to the 

stretching vibration of the hydroxyl group (-OH), and 

at 1651 cm-1, corresponding to –OH bending (Govindan 

& Soliman, 2017). The number of hydroxyl groups in 

Ag2O-TiO2 determines its photocatalytic activity. More 

-OH functional groups contribute to an increased 

production of hydroxyl radicals, which can enhance 

photocatalytic activity (Zhang et al., 2016). The 

presence of hydroxyl groups plays a key role in 

enhancing photocatalytic activity as they act as the 

primary scavengers of photogenerated electrons and 

holes, leading to the formation of hydroxyl radicals 

(OH•) necessary for the degradation of RR4 dye. The 

anatase phase of TiO2 is evident from the peaks in the 

range of 650-1400 cm-1, indicating the lattice vibration 

of Ti-O-Ti stretching, which confirmed the presence 

of metal-oxygen bonding. The peaks at 1382 cm -1 

corresponded to TiO2-Ag, suggesting that Ag had 

been successfully deposited on the pores of the TiO2 

nanoparticles (Desiati et al., 2019; Govindan & Soliman, 

2017). The peak observed at 2930 cm-1 corresponds to 

Ag2O, representing the Ag-O vibration. Elyamny et al. 

(2021) stated that an absorption band at 653 cm -1 

represents the Ag-O stretching mode, corresponding 

to the Ag-O vibration in Ag2O. Therefore, this 

confirmed that TiO2 was successfully doped with 

Ag2O, and the formation of Ag is also evident,  

corroborating the previously mentioned XRD and 

FESEM-EDX results. Furthermore, upon observation, 

the main difference was found in the peak intensity of 

Ag2O in the optimal 3 % Ag2O/Ag-TiO2 sample, 

which was the lowest compared to the other samples. 

This may be attributed to most of the silver precursor 

having been transformed into Ag0. Fortunately, the 

presence of Ag0 catalyses the heterojunction between 

Ag/Ag2O-TiO2, as the Ag metal in the system can 

absorb visible light due to surface plasmon resonance 

and also act as an electron trap to activate reaction 

sites. 

 

PL analysis was also conducted to investigate 

the migration and separation of photogenerated electron- 

hole (e-/h+) pairs. A low intensity PL indicates a low 

recombination rate of photogenerated charge carriers, 

which can improve photocatalytic performance. As 

shown in Figure 6, all samples exhibited an emission 

peak in the range of 400-700 nm. In the case of pure 

unmodified TiO2, the strong signal at 500 nm was 

associated with Wannier-Mott free excitation emission. 

The 3 % Ag/Ag2O-TiO2 sample exhibited a lower 

intensity signal compared to unmodified TiO2. This 

can be explained by the p-n heterojunction between 

Ag2O and TiO2, which enhances charge transfer and 

suppresses the recombination of photogenerated e-/h+ 

pairs due to the synergistic effect. The presence of Ag0, 

as proven by HRTEM, also contributes to this effect 

by acting as a conductive bridge for photogenerated 

charges, facilitating charge transfer and promoting 

the separation of photogenerated e-/h+ pairs in the 

system, thereby improving photocatalytic performance.

 

 

 
 

Figure 6. PL spectra for unmodified TiO2 and modified of 3% Ag/Ag2O-TiO2. 
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Figure 7. Percentage remaining of RR4 after photodegradation process for 60 mins 

 

 

These mechanisms minimize the rate of e -/h+ 

recombination while increasing the ability of the 

photocatalysts to absorb visible light. The as-

synthesised Ag/Ag2O-TiO2 nanoparticles have 

capabilities that make them perfect for use as  

photocatalysts. Furthermore, electrons trapped due to 

defects on the TiO2 lattice can act as charge traps, 

impeding the movement of free electrons and reducing 

their availability for radiative processes. Limited 

electron mobility restricts their ability to recombine 

efficiently, resulting in a decrease in PL intensity. 

The trapped electrons and surface-bound holes can 

recombine, impacting the overall charge dynamics and 

the efficiency of charge utilization in photocatalytic 

processes (Komaraiah et al., 2020) 

 

Photocatalytic Degradation study  

 

The photocatalytic activity of the prepared photocatalysts 

was assessed using the photodegradation of RR4 dye 

under visible light by a reverse method. Figure 7 

presents the percentage of RR4 dye remaining after 

the photocatalytic degradation of unmodified and 

modified Ag2O-doped TiO2, along with commercial 

P25 and Ag/Ag2O-TiO2 used as benchmarks. Based 

on Figure 7, after one hour of exposure to visible 

light, 1 % Ag/Ag2O-TiO2 and 4 % Ag/Ag2O-TiO2 

exhibited similar photocatalytic activity, decolourising 

approximately 40 % of the RR4 dye. In contrast, 

unmodified TiO2 and 2 % Ag/Ag2O-TiO2 demonstrated 

significantly higher photocatalytic performance with 

RR4 degradation rates of 70 % and 60 %, respectively. 

Interestingly, 3 % Ag/Ag2O-TiO2 showed the highest 

RR4 degradation performance among the studied 

samples, achieving more than 85 % decolourisation. 

Notably, all unmodified and modified Ag2O and 

Ag-doped TiO2 photocatalysts exhibited more than 

40 % decolorization of RR4 dye within one hour of 

light irradiation. The adsorption and desorption of 

RR4 dye play a vital role in determining the  

efficiency of the photocatalyst. In the case of the 

3 % Ag/Ag2O-TiO2, it was observed that RR4 began 

to adsorb on the surface of the immobilized photo-

catalyst particles when they were mixed with the 

RR4 solution. A previous study has reported that 

differences in particle surface area and electrical 

charge may be responsible for the adsorption 

mechanism between RR4 and 3 % Ag/Ag2O-TiO2 

(Rahmawati et al., 2023). This can be attributed to the 

excess Ag and Ag2O formed on the surface of the 

immobilized TiO2 which creates positive charges, 

while RR4 dye carries negative electric charges. 

The strong electrostatic force between the dye 

and particle mixture leads to a significant decrease 

in RR4 concentration. 

 

The Langmuir-Hinshelwood pseudo-first-order 

model was employed to calculate the kinetic rate 

constant (ka) for the photocatalytic reaction shown in 

Figure 8. This was done by analysing the linear fitting 

of ln (Ct/Co) versus time, with an R2 value above 0.85. 

The calculated kinetic rate constants are listed in Table 

2 (Long et al., 2018). Among all the samples, 3 % 

Ag/Ag2O-TiO2 exhibited the highest RR4 degradation 

rate under visible light, with a rate constant of 3.21 x 

10-2 h-1. This indicated the fastest reaction rate. The 

increased photocatalytic activity of 3 % Ag/Ag2O-

TiO2 can be attributed to factors such as its high 

surface area, strong dye adsorption capability, and an 

appropriate anatase-rutile ratio. 
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Figure 8. k-Value of photodegradation of RR4 Dyes. 

 

 

 

Table 2. Kinetic rate constants for the photocatalysts. 

Photocatalyst  Kinetic rate constant (x 10-2) (h-1) 

Unmodified TiO2  2.19  

1% Ag/Ag2O-TiO2 1.33  

2% Ag/Ag2O-TiO2 1.79  

3% Ag/Ag2O-TiO2 3.21  

4% Ag/Ag2O-TiO2 1.16 

 

 

The increase in efficiency of the prepared TiO2 

after being doped with Ag2O using a silver precursor 

may be due to the incomplete conversion of the silver 

nitrate precursor into silver oxide. However, this 

phenomenon has had positive effects in the presence 

of silver. It is a good approach to enhance photocatalytic 

activity by altering the electronic structure of the 

composite material's Fermi level and preventing  

electron recombination. This effect can be attributed 

to surface plasmon resonance (SPR) or LSPR, which 

can enhance and modulate electromagnetic fields, 

light absorption and scattering (Sun et al., 2021). The 

presence of Ag2O and Ag on the TiO2 lattice can 

influence the photocatalytic oxidation reactions of the 

prepared Ag/Ag2O-TiO2 photocatalyst. Defects such 

as dislocations, vacancies, or impurity sites can occur 

due to the presence of Ag and Ag2O on the TiO2 lattice 

(Ode et al., 2023). These defects play a crucial role in 

enhancing the performance of TiO2 as the main 

photocatalyst. They create localized energy levels 

within the band structure of TiO 2, resulting in 

additional electronic states. These states enhance the 

separation and transfer of charge carriers, reduce 

recombination, and increase the availability of  

reactive species for oxidation reactions (Zhao et al., 

2017). Furthermore, the presence of Ag and Ag2O 

induces oxygen vacancies in the lattice of TiO2. These 

vacancies act as electron traps and facilitate the  

migration of photogenerated electrons to the TiO2 

surface, where they can participate in oxygen  

reactions. This confirms that the presence of Ag2O and 

Ag has a significant impact on the performance of the 

TiO2 photocatalyst. However, the agglomeration of 

Ag nanoparticles into larger clusters on the surface, 

which might restrict surface reaction sites and impede 

light absorption and adsorption of reactant molecules 

by TiO2, could account for the decrease in photocatalytic 

activity observed in Ag/Ag2O-TiO2 samples with 

significant Ag decoration (e.g., 4% Ag2O-TiO2) 

(Mogal et al., 2014). 
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Table 3. Recent reports on Ag/Ag2O-TiO2. 

 

Photocatalyst Fabrication Technique Substance 

Degraded 

Photocatalytic Performance Ref 

 

Ag/TiO2 

 

Ag/TiO2 

 

 

 

 

Ag/TiO2 

 

 

Ag/TiO2 

 

 

Ag/TiO2 

 

 

Ag/TiO2 

 

 

Ag/Ag2O- TiO2 

 

 

 

Ag2O/TiO2 

 

 

Ag-Ag2O-TiO2 

 

 

Ag2O/TiO2 

 

 

Ag-Ag2O-TiO2 

 

 

Spin coated 

 

Spin coated 

 

 

 

 

Sol-gel 

 

 

Hydrothermal 

 

 

Photoreduction 

 

 

In-situ reduction 

 

 

Sol-gel 

 

 

 

Wet precipitation 

 

 

Magnetron sputtering 

 

 

Facile wet chemical 

 

 

Photodeposition 

 

Ethylene 

 

Methyl orange 

(MO)& 

Methylene blue 

(MB) 

 

Oxytetracycline 

 

 

MB dye 

 

 

MB dye 

 

 

Rhodamine (RhB) 

dye 

 

Imazaphyr 

herbicide 

 

 

RhB dye 

 

 

RhB dye 

 

 

RhB, MB dye, 4-

nitrophenol 

 

RhB dye 

 

Degradation of ethylene at 43.9-91.2% 

 

Degradation of MB at 98.85% and MO at 

96.34% 

 

 

 

Degradation > 94% 

 

 

MB degradation > 94% 

 

 

MB degradation > 97.89% 

 

 

RhB degradation > 97.8% 

 

 

Total degradation 100% after 180 min 

 

 

 

RhB degradation of 94.7% 

 

 

RhB degradation of 68.7% 

 

 

MB dye = 94%, RhB dye = 59%, 4-

nitrophenol = 90.6% 

 

RhB dye degradation of 80% 

(Thi et al., 

2023) 

 

(Komaraiah et 

al., 2020) 

 

 

 

(Hieu et al., 

2023) 

 

(Aravind et 

al., 2023) 

 

(Lin et al., 

2023) 

 

(Tian et al., 

2023) 

 

(Mkhalid et 

al., 2020) 

 

 

(Gao & Wang, 

2021) 

 

(Yu et al., 

2020) 

 

(Mohapatra et 

al., 2020) 

 

(Vodyankin et 

al., 2021) 

 

 

The low photocatalytic performance of the 

modified 1 %, 2 %, and 4 % Ag/Ag2O-TiO2 samples 

may be attributed to the reverse preparation method 

employed in this study. In the conventional method, 

Ag2O-TiO2 is prepared by doping Ag into a slurry 

form of TiO2 powder prior to immobilization (Ismail 

et al., 2015). However, in the present study, a reverse 

method was used where the immobilized TiO2 was 

prepared before the photodeposition of Ag2O. This 

method may result in lower photocatalytic activity as 

there could be less contact between Ag2O-TiO2 and 

the dye due to the immobilization prior to photo-

deposition. Table 3 provides an overview of various 

potential techniques for preparing Ag/Ag2O-TiO2 

photocatalysts. The efficiency of the Ag2O-TiO2 

photocatalyst prepared using the normal method has 

been reported to be low, possibly due to the limited 

contact between Ag2O-TiO2 and the dye. In this 

study, the reverse method was employed, where the 

immobilized TiO2/DSAT was immersed in an aqueous 

solution of AgNO3 in isopropyl alcohol (IPA) during 

photodeposition. This method was expected to enhance 

the photocatalytic activity of TiO2 after doping with 

Ag2O, as the particles were anticipated to be located 

within the outer layer pores or inside the TiO2 pores, 

as shown in Figure 9 (a). The silver particles were 

expected to be distributed throughout the system due 

to the photodeposition method, as confirmed by the 

XRD and FTIR results. The presence of more Ag/ 

Ag2O-TiO2 on the surface layer could increase the 

contact between Ag/Ag2O-TiO2 and the dye compared 

to a photocatalyst prepared by the normal method. 

Consequently, this may enhance the performance of 

Ag/Ag2O-TiO2 in degrading RR4 dyes. Fortunately, 

during the preparation process, a good heterojunction 

and Z-scheme heterojunction system were indirectly 

formed through the interaction facilitated by the  

excess Ag metal acting as an electron shuttle mediator 

in Ag/Ag2O-TiO2 (Sun et al., 2021; Fu et al., 2015). 

The Z-scheme system promotes the separation of 

electron-hole pairs and retains a prominent redox 

ability, as depicted in Figure 9 (b). Photoinduced 

electron transfer occurs to the metallic Ag0 on the 

composite surface, which acts as an electron pool and 
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reduces the probability of electron-hole recombination. 

The trapped electrons on Ag0 or the conduction band 

of TiO2 can be transferred to oxygen on the nano-

composite surface, leading to the generation of  

superoxide radicals (Zhou et al., 2019; Shume et al., 

2020). The possible reaction steps involved in the 

photocatalytic degradation process of Ag2O/Ag/TiO2 

are described in equation 3:  

 
Ag2O + hv → Ag2O (e- 

CB + h+ 
VB) 

Ag2O (e-) + Ag → Ag (e-) → TiO2 (e-)  

TiO2 (e-) + O2 → TiO2 + O2•- 

O2•- + H2O → HO2• + -OH                                       (3) 

2HO2• → H2O2 + O2 

H2O2 + e- → •OH + -OH  

•OH /O2
- + RR4 dyes → degradation product   

CONCLUSION 

 

A Ag/Ag2O-TiO2 photocatalyst was successfully 

modified using a reverse method. Characterization 

by FTIR, FESEM-EDX and XRD confirmed that 

Ag2O was successfully doped onto the TiO 2 

surface. The presence of excess Ag metal in the 

system created a Z-scheme heterojunction system 

that helped to boost photocatalytic performance.  

In comparison to undoped immobilized TiO2, the 

photodegradation of RR4 under immobilized Ag/ 

Ag2O-TiO2 significantly increased with 3 % loading. 
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Figure 9. (a) Expected dispersion of Ag and Ag2O particles on TiO2/DSAT (b) Proposed mechanism Z-scheme 

heterojunction effect of Ag/Ag2O-TiO2. 
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