# The Structural and Morphological Properties of Novel Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> Composite

Nur Ramadhan Mohamad Azaludin<sup>1</sup>, Zul Adlan Mohd Hir<sup>1</sup>, Zuraida Khusaimi<sup>2</sup>, Nurul Infaza Talalah Ramli<sup>1</sup>, Mohd Arif Sarjidan<sup>3</sup>, Paweena Dulyaseree<sup>4</sup> and Hartini Ahmad Rafaie<sup>5\*</sup>

<sup>1</sup>Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka Pahang, Malaysia

<sup>2</sup>Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia

<sup>3</sup>Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya 50603 Kuala Lumpur, Malaysia

<sup>4</sup>Department of Physics, Faculty of Science Technology and Agriculture, Yala Rajabhat University, 133, Thesaban 3, Sateng, Muang Yala, 95000 Thailand

<sup>5</sup>Centre of Foundation Studies, Universiti Teknologi MARA, Selangor Branch, Dengkil Campus, 43800 Dengkil Selangor, Malaysia

\*Corresponding author (e-mail: hartinirafaie@uitm.edu.my)

Ag-based semiconductor materials have recently attracted the attention and research efforts of many material scientists due to its broad range of applications. This study aimed to examine the effect of incorporation of niobium pentoxide (Nb<sub>2</sub>O<sub>5</sub>) to the structural and morphological properties of silver carbonate (Ag<sub>2</sub>CO<sub>3</sub>). The synthesis and evaluation on Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>, and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite were discussed in detailed. Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>, and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite were discussed in detailed. Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>, and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite were synthesized by facile precipitation method at room temperature and were characterized by X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FT-IR) spectroscopy, and Field Emission Electron Microscopy (FESEM) for its structural and morphological properties. XRD patterns revealed that both Ag<sub>2</sub>CO<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub> have monoclinic crystal structure. FT-IR analysis showed the existence of CO<sub>3</sub><sup>2-</sup>, C–O and Nb=O groups, as well as the formation of bridging Nb–O–Nb in the composite matrix. Morphological analysis showed that the Nb<sub>2</sub>O<sub>5</sub> particles were irregular spherical-shaped and were well-distributed on the surface of irregular short rod structure of Ag<sub>2</sub>CO<sub>3</sub>.

Keywords: Structural; morphological; niobium pentoxide; silver carbonate; precipitation

Received: December 2022; Accepted: April 2023

Transition metal oxide semiconductors are a broad class of materials with a variety of applications. These semiconductor-metal nanocomposites provide a novel and practical approach for the synthesis of new materials with targeted optical, electrical, or catalytic capabilities. These materials have a number of possible applications in the fields of optoelectronics, photo-catalysis, plasmonic, and sensing (Aamir, 2021). Recently, substantial amount of interest has been focusing on finding the extensive bandgap of metal oxide semiconductor materials with nanoscale dimensions. Metal oxides are known as the chemical compounds that are formed due to the chemical reactions between cation metals and oxide ions (Srinivasa Varaprasad et al., 2021).

Among many transition metal oxides, silver carbonates (Ag<sub>2</sub>CO<sub>3</sub>) is a common p-type semiconductor with a moderate band gap of 2.30 eV (539 nm), and a lot of research has also been done on Ag<sub>2</sub>CO<sub>3</sub> for its high-performance photocatalytic performance and anti-bacterial properties (Saud et al., 2015). It is also

considered to be another significant Ag-based semiconductor materials with a large capacity of absorbing visible light and a relatively narrow bandgap (Arumugam Senthil et al., 2020). However, its use is restricted by its extremely poor stability brought on by photo-corrosion that is due to the creation of metallic Ag (Guo et al., 2015; Saud et al., 2015; P. Wang et al., 2021). Such weakness has prevented its practical application, and several studies have been done to combine Ag<sub>2</sub>CO<sub>3</sub> with different materials to improve its properties, stability and application in photocatalysis, such as Ag<sub>2</sub>CO<sub>3</sub>/ZnO (Sánchez-Cid et al., 2019), (C. Wu, 2014; Xiang et al., 2016), Ag<sub>2</sub>CO<sub>3</sub>/CeO (C. Wu, 2015), Ag<sub>2</sub>CO<sub>3</sub>/GO (Chen et al., 2018), Ag<sub>2</sub>CO<sub>3</sub>/rGO (W. Wang et al., 2017), and Ag<sub>2</sub>CO<sub>3</sub>/TiO<sub>2</sub> (Feng et al., 2014; L. Wu et al., 2019).

Meanwhile, Nb<sub>2</sub>O<sub>5</sub> is an n-type semiconductor with a bandgap energy of 3.0-3.4 eV, and a lot of research has been done on Nb<sub>2</sub>O<sub>5</sub> in various fields. Some notable applications of Nb<sub>2</sub>O<sub>5</sub> involved the photocatalytic reduction of waste plastics, the activation of

hydrocarbons, the photoreduction of CO<sub>2</sub>, the selected transformation of amines and alcohols, and also photodegradation of hazardous organic pollutants (Shao et al., 2015; Su et al., 2021). Furthermore, it has the qualities of not being harmful and long-term stability against chemical and photo-corrosion (de Moraes et al., 2020; Nunes et al., 2020; Shao et al., 2015). These findings point to Nb<sub>2</sub>O<sub>5</sub> desirable characteristics and its capability for practical uses (Su et al., 2021). Thus, as reported previously, other Ag-based semiconductor materials, i.e., Ag<sub>3</sub>PO<sub>4</sub> has been successfully combined with Nb<sub>2</sub>O<sub>5</sub> and yielded an improvement in its properties, stability as well as its application in photocatalysis (Osman et al., 2021; Shao et al., 2015). Therefore, combining another Ag-based semiconductor materials, like Ag<sub>2</sub>CO<sub>3</sub> with Nb<sub>2</sub>O<sub>5</sub> can be a strong candidate and good opportunity for an enhancement of Ag<sub>2</sub>CO<sub>3</sub> characteristics, stability, as well as its application in photocatalysis.

In the present study, the preparation of  $Ag_2CO_3/Nb_2O_5$  composite via a facile chemical precipitation method was investigated as well as the characterization of the prepared samples X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDX) and Fourier transform infrared (FT-IR) emphasising on its effect on the structural and morphological properties of the materials. To the best of our knowledge, there are very limited number of studies that proposed the formation of heterojunction between  $Nb_2O_5$  and  $Ag_2CO_3$  in the previous study.

#### **EXPERIMENTAL**

#### Materials

Silver nitrate (AgNO<sub>3</sub>,  $\geq$  99%), Sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>,  $\geq$  99%) were supplied by R&M Chemicals (Malaysia) and Niobium pentoxide (Nb<sub>2</sub>O<sub>5</sub>, 99.99%) were supplied by Sigma-Aldrich (Germany). Deionized water was used throughout the experiments. All other reagents were used without further purification.

#### Preparation of Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> Composite

The Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite were prepared by facile chemical precipitation method. In this procedure, Nb<sub>2</sub>O<sub>5</sub> (0.01 mol) was dispersed into the AgNO<sub>3</sub> (0.02 mol) solution prior to sonication for 30 minutes. Next, Na<sub>2</sub>CO<sub>3</sub> (0.01 mol) was added to the stock solution with continuous stirring for 1 hour at room temperature. The obtained precipitate was collected and washed with 100 ml deionized water thrice to remove any adsorbed ions on the surface of the precipitate or any other impurities. Following that, the product was dried in an oven at 60°C for 24 hours and the resultant sample was named as Ag:Nb 1:1. For the preparation of pure Ag<sub>2</sub>CO<sub>3</sub> similar experimental procedure was employed without additional of Nb<sub>2</sub>O<sub>5</sub>. The pure Nb<sub>2</sub>O<sub>5</sub> was ground before being used throughout the experiments and also used as control sample.

## **Material Characterisations**

The structural properties of pure Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite were analysed by X-Ray Diffraction (XRD) on PANalytical X'Pert PRO diffractometer with Cu K $\alpha$  radiation ( $\lambda = 0.154056$  nm) at 2 $\theta$  ranging from 10° to 75°. Fourier transform infrared (FT-IR) spectra were conducted using Perkin Elmer infrared spectrometer using attenuated total reflection (ATR) accessory in the frequency range between 500 to 4000 cm<sup>-1</sup>. The morphological and elemental composition analysis were characterized by field-emission scanning electron microscope equipped with an electron dispersive X-ray analyser (FESEM-EDX, JEOL JSM-7600F).

# **RESULTS AND DISCUSSION**

#### X-Ray Diffraction (XRD) Analysis

XRD studies were carried out to investigate the phase structure and crystalline nature of the synthesized samples. Figure 1 portrays the XRD patterns of the prepared pure Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite. It was observed that the peaks of diffraction of pure Ag<sub>2</sub>CO<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub> were in good agreement with the monoclinic crystal structure of both Ag<sub>2</sub>CO<sub>3</sub> (JCPDS No. 01-070-2184) and Nb<sub>2</sub>O<sub>5</sub> (JCPDS No. 00-037-1468), respectively. The major diffraction peaks of Ag<sub>2</sub>CO<sub>3</sub> are located at  $2\theta = 18.561^{\circ}$ ,  $20.524^{\circ}$ , 28.972°, 32.591°, 33.644°, 37.048°, 39.572°, and 51.359°, which are indexed to (020), (110), (011), (-101), (130), (200), (031), and (150) crystal planes of Ag<sub>2</sub>CO<sub>3</sub>. The sharp and intense diffraction peaks indicate the good crystalline nature of Ag<sub>2</sub>CO<sub>3</sub>. The similar crystal structure was also reported by Sánchez-Cid et. al (2019), and Wu. C (2014, 2015) (Sánchez-Cid et al., 2019; C. Wu, 2014, 2015). Meanwhile, major diffraction peaks of Nb<sub>2</sub>O<sub>5</sub> are located at  $2\theta =$ 23.737°, 24.418°, 25.510°, 31.616°, 32.238°, 38.855°,  $47.524^\circ$ , and  $50.987^\circ$  can be assigned to (110), (-405), (402), (-414), (411), (-713), (704), and (-422) crystal planes of Nb<sub>2</sub>O<sub>5</sub>. Other researchers also reported the same crystal structure, like Graça and his colleagues (2013) and also Kumari and his partners (2020) (Graça et al., 2013; Kumari et al., 2020). Meanwhile, the XRD patterns of Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite demonstrate that the peaks of diffraction matched to Ag<sub>2</sub>CO<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub>, which therefore demonstrating that the phase of the composite materials was preserved in its original form (Zul et al., 2018). Furthermore, as seen in the patterns, no shifting of peaks occurred and as the molar ratio of Nb<sub>2</sub>O<sub>5</sub> in the composites increased, the intensities of the distinctive peaks of Nb<sub>2</sub>O<sub>5</sub> also increased, whilst those of Ag<sub>2</sub>CO<sub>3</sub> decreased, and vice versa (Yin et al., 2015).

297 Nur Ramadhan Mohamad Azaludin, Zul Adlan Mohd Hir, Zuraida Khusaimi, Nurul Infaza Talalah Ramli, Mohd Arif Sarjidan, Paweena Dulyaseree and Hartini Ahmad Rafaie

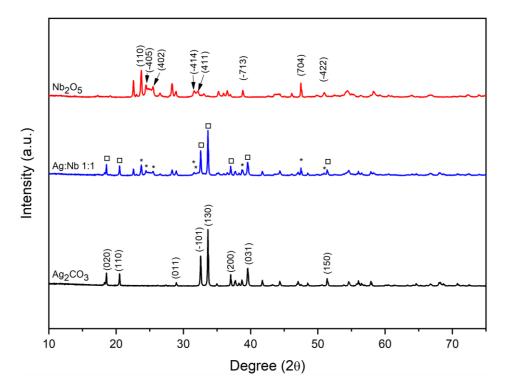



Figure 1. XRD diffraction patterns of the as-prepared Nb<sub>2</sub>O<sub>5</sub>, Ag<sub>2</sub>CO<sub>3</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> (1:1) composite

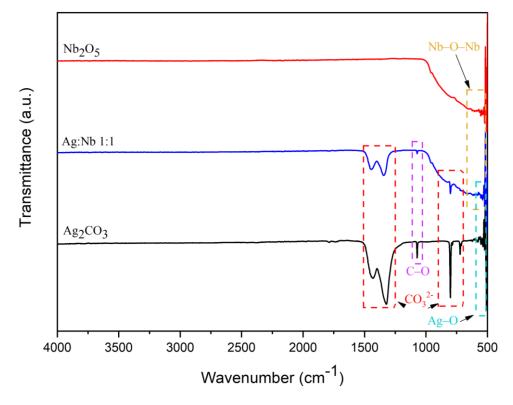



Figure 2. FTIR spectra of the as-prepared Nb<sub>2</sub>O<sub>5</sub>, Ag<sub>2</sub>CO<sub>3</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> (1:1) composite

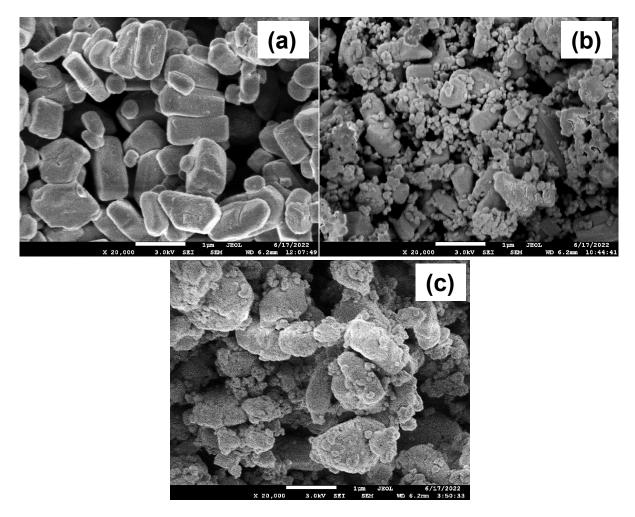
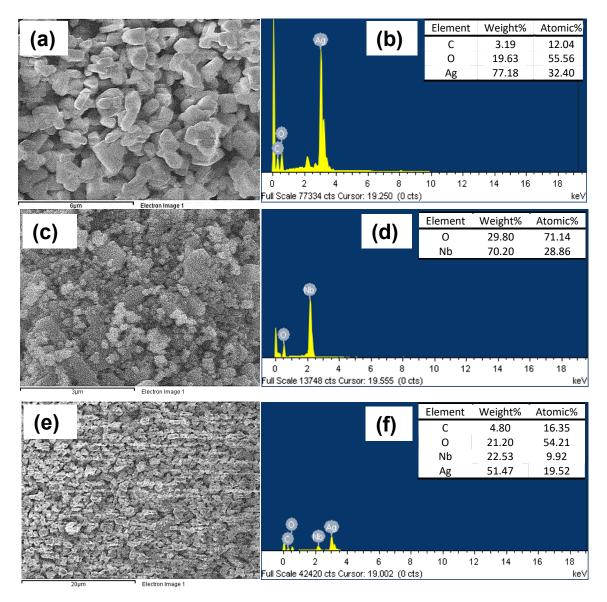

# Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Figure 2 depicts the FT-IR spectra of the prepared pure Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite. At wavenumbers around 500 cm<sup>-1</sup>, the peaks appear to be a Ag-O characteristics for all samples (Rosman et al., 2020). The spectrum of Nb<sub>2</sub>O<sub>5</sub> showing at around 500-650 cm<sup>-1</sup> belongs to the bridging, stretching and angular vibrations of Nb-O-Nb, while a broad shoulder around 948 cm<sup>-1</sup> is attributed to Nb=O stretching (Peng et al., 2021). In the case of  $Ag_2CO_3/Nb_2O_5$  spectra, the peaks between 1350-1500 cm<sup>-1</sup> and around 800 cm<sup>-1</sup> are attributed to the asymmetric stretching vibration of  $CO_3^{2-}$  and symmetric deformation of  $CO_3^{2-}$ , respectively (An et al., 2020; Bankole et al., 2022; Liang et al., 2018; Rosman et al., 2020)(Azami et al., 2022; Nyankson et al., 2019; Raizada et al., 2020; Reheman et al., 2019; Rosman et al., 2018; Zhang et al., 2022). Additionally, the  $CO_3^{2-}$  bands at the peaks between 1350-1500 cm<sup>-1</sup>, however, shifted to higher wavenumbers in Ag<sub>2</sub>CO<sub>3</sub>/ Nb<sub>2</sub>O<sub>5</sub> composite. This may be caused by the interactions between Nb-O-Nb and CO32- in the Nb2O5 and Ag2CO3 molecules, respectively (Nyankson et al., 2019; Reheman The Structural and Morphological Properties of Novel Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> Composite

et al., 2019). Moreover, the peaks at around 1071 cm<sup>-1</sup> are corresponding to the vibrational stretching of the C–O group (Nyankson et al., 2019).


# Surface Morphology and Elemental Composition Analysis

The surface morphology of the prepared pure  $Ag_2CO_3$ , Nb<sub>2</sub>O<sub>5</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite are characterized by FESEM and the results are displayed in Figure 3 (a-c). It can be seen that, the images revealed the formation of pure Ag<sub>2</sub>CO<sub>3</sub> is irregular short rod structure while for pure Nb<sub>2</sub>O<sub>5</sub>, an irregular spherical-shape was displayed in the micrograph (Figure 3a and 3b). The coupling of Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite are observed to have a structure of an irregular spherical-shaped were randomly dispersed on the surface of irregular short rod (Figure 3c). Moreover, substantial agglomeration of the particles was visible in the picture showing the different molar ratios of Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composites. Relatively comparable distribution was also reported by Wu and his co-workers (2019) on his Ag<sub>2</sub>CO<sub>3</sub>@ TiO<sub>2</sub> composite and Zhang et. al (2022) on ZnFe<sub>2</sub>O<sub>4</sub>/ PANI/Ag<sub>2</sub>CO<sub>3</sub> (L. Wu et al., 2019) (Zhang et al., 2022).



**Figure 3.** FESEM images of the as-prepared (a) Pure Ag<sub>2</sub>CO<sub>3</sub>, (b) Pure Nb<sub>2</sub>O<sub>5</sub>, (c) Ag:Nb 1:1 at 20k magnification

299 Nur Ramadhan Mohamad Azaludin, Zul Adlan Mohd Hir, Zuraida Khusaimi, Nurul Infaza Talalah Ramli, Mohd Arif Sarjidan, Paweena Dulyaseree and Hartini Ahmad Rafaie



**Figure 4.** EDX analysis of (a-b) pure Ag<sub>2</sub>CO<sub>3</sub>, (c-d) pure Nb<sub>2</sub>O<sub>5</sub>, and (e-f) selected Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite with ratio 1:1

Elemental compositional characterization of pure Ag<sub>2</sub>CO<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub> and Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite was performed using EDX. In addition, Figure 4 displays the typical EDX spectrum obtained from elemental composition analysis of the prepared pure Ag<sub>2</sub>CO<sub>3</sub>, pure Nb<sub>2</sub>O<sub>5</sub> and selected Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite i.e Ag:Nb 1:1. The EDX analysis reveals the presence of Ag, Nb, C, and O with no additional impurities peak seen, demonstrating the purity of the prepared samples. Moreover, the atomic percent of Ag to Nb element in the EDS analysis is observed to increase in parallel with molar ratios of the materials. The EDX results verified that the prepared samples were composed of Ag<sub>2</sub>CO<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub> materials.

#### CONCLUSION

In conclusion, the Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite were successfully prepared via a simple chemical precipitation method and exhibit irregular spherical-shaped that

randomly dispersed on the surface of irregular short rod structure. The XRD patterns revealed that both Ag<sub>2</sub>CO<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub> have monoclinic crystal structure with no shifting of peaks occurred. The FT-IR analysis pointed out the existence of several functional groups assigned to their respective stretching vibrations especially for Ag–O (~500cm<sup>-1</sup>), C–O (1071 cm<sup>-1</sup>), CO<sub>3</sub><sup>2-</sup> (~800 cm<sup>-1</sup> and 1350-1500 cm<sup>-1</sup>), Nb–O–Nb (500-650 cm<sup>-1</sup>) and Nb=O (948 cm<sup>-1</sup>), respectively. Additionally, this study would be a key approach for gaining a thorough grasp of the morphological and structural characteristics on heterojunction coupling system of Ag<sub>2</sub>CO<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> composite. The insight knowledge on the properties of the prepared composite could be beneficial for research enhancement and future application such as it can be potentially act as photocatalyst.

# ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support

provided by the Ministry of Higher Education (MOHE) and Universiti Teknologi MARA (UiTM) for the YTR grant (600-RMC/YTR/5/3 (005/2020)), as well as the services and facilities provided to carry out the laboratory work in UiTM Pahang Branch, Jengka Campus and Centre for Functional Materials and Nanotechnology, Institute of Science, UiTM Shah Alam, Selangor.

The authors declare that they have no conflict of interest.

## REFERENCES

- Aamir, L. (2021) Novel p-type Ag-WO<sub>3</sub> nanocomposite for low-cost electronics, photocatalysis, and sensing: synthesis, characterization, and application. *Journal of Alloys and Compounds*, 864, 158108. https://doi.org/10.1016/j.jallcom. 2020.158108.
- An, W., Sun, K., Hu, J., Cui, W. & Liu, L. (2020) The Z-scheme Ag<sub>2</sub>CO<sub>3</sub>@g-C<sub>3</sub>N<sub>4</sub> core-shell structure for increased photoinduced charge separation and stable photocatalytic degradation. *Applied Surface Science*, **504**. https://doi.org/10.1016/j. apsusc.2019.144345.
- Arumugam Senthil, R., Khan, A., Pan, J., Osman, S., Yang, V., Kumar, T. R., Sun, Y. & Liu, X. (2020) A facile single-pot synthesis of visiblelight-driven AgBr/Ag<sub>2</sub>CO<sub>3</sub> composite as efficient photocatalytic material for water purification. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **586**. https://doi.org/10.1016/ j.colsurfa.2019.124183.
- Azami, M. S., Jalil, A. A., Aziz, F. F. A., Hassan, N. S., Mamat, C. R., Fauzi, A. A. & Izzudin, N. M. (2022) Exploiting the potential of silver oxosalts with graphitic carbon nitride / fibrous silicatitania in designing a new dual Z-scheme photocatalyst for photodegradation of 2-chlorophenol. *Separation and Purification Technology*, **292** (April), 120984. https://doi.org/10.1016/j.seppur. 2022.120984.
- Bankole, O. M., Ojubola, K. I., Adanlawo, O. S., Oluwafemi, K. A., Adedapo, A. O., Adeyemo, M. A., Olaseni, S. E., Oladoja, N. A., Olivier, E. J., Ferg, E. E. & Ogunlaja, A. S. (2022) Atmospheric CO<sub>2</sub> mediated formation of Ag<sub>2</sub>O-Ag<sub>2</sub>CO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> (p-n/n-n dual heterojunctions) with enhanced photoreduction of hexavalent chromium and nitrophenols. *Journal of Photochemistry and Photobiology A: Chemistry*, **427** (September 2021). https:// doi.org/10.1016/j.jphotochem.2022.113800.
- Chen, H., Xu, H. & Dong, W. (2018) Preparation and Photocatalytic Properties of Ag<sub>2</sub>CO<sub>3</sub> / Graphene Composite Photocatalyst. *Journal of*

*Analytical Chromatography and Spectroscopy*, **1(1)**, 1–9. https://doi.org/10.24294/jacs.v1i1.346.

- de Moraes, N. P., dos Santos, G. S., Neves, G. C., Valim, R. B., da Silva Rocha, R., Landers, R., Caetano Pinto da Silva, M. L. & Rodrigues, L. A. (2020) Development of Nb<sub>2</sub>O<sub>5</sub>-doped ZnO/Carbon xerogel photocatalyst for the photodegradation of 4-chlorophenol. *Optik*, **219**. https://doi.org/10. 1016/j.ijleo.2020.165238.
- Feng, C., Li, G., Ren, P., Wang, Y., Huang, X. & Li, D. (2014) Effect of photo-corrosion of Ag<sub>2</sub>CO<sub>3</sub> on visible light photocatalytic activity of two kinds of Ag<sub>2</sub>CO<sub>3</sub>/TiO<sub>2</sub> prepared from different precursors. *Applied Catalysis B: Environmental*, 158–159, 224–232. https://doi.org/10.1016/j. apcatb. 2014.04.020.
- Graça, M. P. F., Meireles, A., Nico, C. & Valente, M. A. (2013) Nb<sub>2</sub>O<sub>5</sub> nanosize powders prepared by sol-gel-Structure, morphology and dielectric properties. *Journal of Alloys and Compounds*, 553, 177–182. https://doi.org/10.1016/j.jallcom. 2012.11.128.
- Guo, S., Bao, J., Hu, T., Zhang, L., Yang, L., Peng, J. & Jiang, C. (2015) Controllable synthesis porous Ag<sub>2</sub>CO<sub>3</sub> nanorods for efficient photocatalysis. *Nanoscale Research Letters*, **10**(1). https://doi.org/10.1186/s11671-015-0892-5.
- Kumari, N., Gaurav, K., Samdarshi, S. K., Bhattacharyya, A. S., Paul, S., Rajbongshi, B. M. & Mohanty, K. (2020) Dependence of photoactivity of niobium pentoxide (Nb<sub>2</sub>O<sub>5</sub>) on crystalline phase and electrokinetic potential of the hydrocolloid. *Solar Energy Materials and Solar Cells*, 208. https://doi.org/10.1016/j.solmat.2020.110408.
- Liang, C., Niu, C. G., Shen, M. C., Yang, S. F. & Zeng, G. M. (2018) Controllable fabrication of a novel heterojunction composite: AgBr and Ag@ Ag<sub>2</sub>O co-modified Ag<sub>2</sub>CO<sub>3</sub> with excellent photocatalytic performance towards refractory pollutant degradation. *New Journal of Chemistry*, 42(5), 3270–3281. https://doi.org/10.1039/c7nj04133k.
- Nunes, B. N., Lopes, O. F., Patrocinio, A. O. T. & Bahnemann, D. W. (2020) Recent advances in niobium-based materials for photocatalytic solar fuel production. In *Catalysts*, **10**, 1. MDPI AG. https://doi.org/10.3390/catal10010126.
- Nyankson, E., Agyei-Tuffour, B., Annan, E., Yaya, A., Mensah, B., Onwona-Agyeman, B., Amedalor, R., Kwaku-Frimpong, B. & Efavi, J. K. (2019) Ag<sub>2</sub>CO<sub>3</sub>-halloysite nanotubes composite with enhanced removal efficiency for water soluble dyes. *Heliyon*, 5(6). https://doi.org/10.1016/j. heliyon.2019.e01969.

- 301 Nur Ramadhan Mohamad Azaludin, Zul Adlan Mohd Hir, Zuraida Khusaimi, Nurul Infaza Talalah Ramli, Mohd Arif Sarjidan, Paweena Dulyaseree and Hartini Ahmad Rafaie
- Osman, N. S., Sulaiman, S. N., Muhamad, E. N., Mukhair, H., Tan, S. T. & Abdullah, A. H. (2021) Synthesis of an Ag<sub>3</sub>PO<sub>4</sub>/Nb<sub>2</sub>O<sub>5</sub> Photocatalyst for the Degradation of Dye. *Catalysts*, **11(4)**, 458. https://doi.org/10.3390/catal11040458.
- Peng, C., Xie, X., Xu, W., Zhou, T., Wei, P., Jia, J., Zhang, K., Cao, Y., Wang, H., Peng, F., Yang, R., Yan, X., Pan, H. & Yu, H. (2021) Engineering highly active Ag/Nb<sub>2</sub>O<sub>5</sub>@Nb<sub>2</sub>CT<sub>x</sub> (MXene) photocatalysts via steering charge kinetics strategy. *Chemical Engineering Journal*, **421**(P1), 128766. https://doi.org/10.1016/j.cej.2021.128766.
- Raizada, P., Sudhaik, A., Singh, P., Shandilya, P., Thakur, P. & Jung, H. (2020) Visible light assisted photodegradation of 2,4-dinitrophenol using Ag<sub>2</sub>CO<sub>3</sub> loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater. *Arabian Journal of Chemistry*, **13(1)**, 3196–3209. https://doi.org/10. 1016/ j.arabjc.2018.10.004.
- Reheman, A., Kadeer, K., Okitsu, K., Halidan, M., Tursun, Y., Dilinuer, T. & Abulikemu, A. (2019) Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag<sub>2</sub>CO<sub>3</sub> nanocomposites with enhanced photocatalytic oxidation activity for tetracycline. *Ultrasonics Sonochemistry*, **51**, 166– 177. https://doi.org/10.1016/j.ultsonch.2018.10.030.
- Rosman, N., Salleh, W. N. W., Ismail, A. F., Jaafar, J., Harun, Z., Aziz, F., Mohamed, M. A., Ohtani, B. & Takashima, M. (2018) Photocatalytic degradation of phenol over visible light active ZnO/ Ag<sub>2</sub>CO<sub>3</sub>/Ag<sub>2</sub>O nanocomposites heterojunction. *Journal of Photochemistry and Photobiology A: Chemistry*, **364**, 602–612. https://doi.org/10.1016/ j.jphotochem.2018.06.029.
- Rosman, N., Salleh, W. N. W., Mohamed, M. A., Harun, Z., Ismail, A. F. & Aziz, F. (2020) Constructing a compact heterojunction structure of Ag<sub>2</sub>CO<sub>3</sub>/Ag<sub>2</sub>O in-situ intermediate phase transformation decorated on ZnO with superior photocatalytic degradation of ibuprofen. *Separation* and Purification Technology, 251. https://doi.org/ 10.1016/j.seppur.2020.117391.
- Sánchez-Cid, P., Jaramillo-Páez, C., Navío, J. A., Martín-Gómez, A. N. & Hidalgo, M. C. (2019) Coupling of Ag<sub>2</sub>CO<sub>3</sub> to an optimized ZnO photocatalyst: Advantages vs. disadvantages. *Journal* of Photochemistry and Photobiology A: Chemistry, 369, 119–132. https://doi.org/10.1016/j.jphoto chem. 2018.10.024.
- Saud, P. S., Pant, B., Ghouri, Z. K., Panthi, G., Park, S. J., Han, W., Park, M. & Kim, H. Y. (2015) Synthesis and characterization of photocatalytic and antibacterial PAN/Ag<sub>2</sub>CO<sub>3</sub> composite

nanofibers by ion exchange method. *Fibers and Polymers*, **16(6)**, 1336–1342. https://doi.org/10. 1007/s12221-015-1336-7.

- Shao, R., Zeng, X., Cao, Z., Dong, H., Wang, L., Wang, F., Liu, J., Li, Z. & Liang, Q. (2015) A novel Ag<sub>3</sub>PO<sub>4</sub>/Nb<sub>2</sub>O<sub>5</sub> fiber composite with enhanced photocatalytic performance and stability. *RSC Advances*, 5(123), 102101–102107. https://doi.org/ 10.1039/c5ra17555k.
- Srinivasa Varaprasad, H., Sridevi, P. V. & Satya Anuradha, M. (2021) Optical, morphological, electrical properties of ZnO-TiO<sub>2</sub>-SnO<sub>2</sub>/CeO<sub>2</sub> semiconducting ternary nanocomposite. *Advanced Powder Technology*, **32(5)**, 1472–1480. https:// doi.org/10.1016/j.apt.2021.02.042.
- Su, K., Liu, H., Gao, Z., Fornasiero, P. & Wang, F. (2021) Nb<sub>2</sub>O<sub>5</sub>-Based Photocatalysts. *Advanced Science*, 8(8), 1–25. https://doi.org/10.1002/advs. 202003156.
- Wang, P., Zhao, H., Li, S., Jing, R., Liu, Y., Jiang, N., Bian, F., Liu, Y., Liu, H. & Zhang, Q. (2021) Fabrication of direct Z-scheme black phosphorus nanosheets/Ag<sub>2</sub>CO<sub>3</sub> heterojunction photocatalyst with enhanced stability and visible light photocatalytic activity. *Journal of Materials Science*, 56(13), 8060–8078. https://doi.org/10. 1007/s10853-020-05752-7.
- Wang, W., Liu, Y., Zhang, H., Qian, Y. & Guo, Z. (2017) Re-investigation on reduced graphene oxide/Ag<sub>2</sub>CO<sub>3</sub> composite photocatalyst: An insight into the double-edged sword role of RGO. *Applied Surface Science*, **396**, 102–109. https:// doi.org/10.1016/j.apsusc.2016.11.030.
- Wu, C. (2014) Synthesis of Ag<sub>2</sub>CO<sub>3</sub>/ZnO nanocomposite with visible light-driven photocatalytic activity. *Materials Letters*, **136**. https://doi.org/ 10.1016/j.matlet.2014.08.074.
- Wu, C. (2015) Synthesis of Ag<sub>2</sub>CO<sub>3</sub>/CeO<sub>2</sub> microcomposite with visible light-driven photocatalytic activity. *Materials Letters*, **152**, 76–78. https:// doi.org/10.1016/j.matlet.2015.03.086.
- Wu, L., Wang, X., Wang, W., Li, J. & Li, X. (2019) Fabrication of amorphous TiO<sub>2</sub> shell layer on Ag<sub>2</sub>CO<sub>3</sub> surface with enhanced photocatalytic activity and photostability. *Journal of Alloys and Compounds*, **806**, 603–610. https://doi.org/10. 1016/j.jallcom.2019.07.200.
- Xiang, Z., Zhong, J., Huang, S., Li, J., Chen, J., Wang, T., Li, M. & Wang, P. (2016) Efficient charge separation of Ag<sub>2</sub>CO<sub>3</sub>/ZnO composites prepared by a facile precipitation approach and its dependence on loading content of Ag<sub>2</sub>CO<sub>3</sub>.

*Materials Science in Semiconductor Processing*, **52**, 62–67. https://doi.org/10.1016/j.mssp.2016. 06.001.

- Yin, L., Wang, Z., Lu, L., Wan, X. & Shi, H. (2015) Universal degradation performance of a high-efficiency AgBr/Ag<sub>2</sub>CO<sub>3</sub> photocatalyst under visible light and an insight into the reaction mechanism. *New Journal of Chemistry*, **39**(6), 4891–4900. https://doi.org/10.1039/c5nj00385g.
- Zhang, R., Zhao, C., Yu, J., Chen, Z. Y., Jiang, J. C., Zeng, K., Cai, L. & Yang, Z. (2022)

Synthesis of dual Z-scheme photocatalyst ZnFe<sub>2</sub>O<sub>4</sub>/PANI/Ag<sub>2</sub>CO<sub>3</sub> with enhanced visible light photocatalytic activity and degradation of pollutants. *Advanced Powder Technology*, **33**(1), 103348. https://doi.org/10.1016/j.apt.2021.10.040.

 Zul, O. N. S., Mohd, A., Hayati, H., Mohd, M., Mastuli, S. & Halim, A. (2018) Designing visiblelight-driven photocatalyst of - Ag<sub>3</sub>PO<sub>4</sub> / CeO<sub>2</sub> for enhanced photocatalytic activity under low light irradiation. *Journal of Materials Science: Materials in Electronics*. https://doi.org/10.1007/ s10854-018-0306-4.