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This study reports the synthesis of chitosan-modified ZnO quantum dots (Chitosan-ZnO QDs) 

via the microwave method for the photodegradation of oxytetracycline (OTC) under visible light 

irradiation. The synthesised photocatalyst was characterised using Fourier transmission infrared 

spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, high-resolution transmission electron 

microscopy (HRTEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance 

spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy and nitrogen adsorption-

desorption (NAD) analysis. The XRD analysis indicates that Chitosan-ZnO QDs have a wurtzite 

hexagonal crystalline phase with an average crystallite size of 8.2 nm. The SEM analysis shows 

an evenly distributed micro-spherical structure. The NAD analysis indicates that the Chitosan-

ZnO QDs is a mesoporous material with a Brunauer-Emmet-Teller (BET) surface area of 31.88 

m2/g and an average pore size distribution of 11.7 nm. The band gap energy was determined to 

be 3.29 eV. The PL analysis detected the presence of various defects, enhancing its  

photocatalytic ability. The removal of OTC was 95.1% within 40 minutes which is higher 

compared to other ZnO‐based photocatalysts reported in the literature. Scavenging tests indicate 

that photogenerated holes (h+) and superoxide radicals (O2
⦁−) were the primary reactive oxygen 

species responsible for photodegrading the OTC. The catalyst was stable to be recycled five 

times. 
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Antibiotic contamination in the aquatic environment is 

a rising concern [1]. Between 100,000 and 200,000 

tonnes of antibiotics are consumed yearly to treat 

various microorganism infections [2]. Oxytetracycline 

(OTC) is a tetracycline (TC) antibiotic that is  

employed as a feed additive to promote animal growth 

in a variety of aquacultures and is widely used to treat 

human and animal diseases [3]. The widespread use of 

antibiotics and their frequent discovery endanger 

human health by fostering the emergence of resistant 

microorganisms [3]. The advanced oxidation processes 

(AOP) utilising photocatalysis are identified as the 

most effective method in removing antibiotics from 

wastewater compared to other methods such as 

flocculation, membrane filtration, biological technology, 

ion exchange and physical adsorption [4-6]. 

 

Zinc oxide (ZnO) is stable, biocompatible and 

cost-effective semiconducting metal oxides [7-8]. 

However, ZnO responds better to UV light than visible 

light due to its wide bandgap (3.37 eV) and also 

having a high rate of charge carrier recombination 

[9,11]. The high recombination rate reduces the charge 

carriers’ lifespan, significantly reducing its photo-

catalytic effectiveness [10]. 

One efficient way to increase the use of ZnO is 

to modify the bulk ZnO into zero‐dimensional (0D) 

quantum dots (QDs) [11]. The QDs are nano-

crystalline semiconductors with a size of less than 10 

nm has a strong confinement effect, hence, making the 

QDs to possess different physical and chemical 

properties compared to the bulk counterpart [11-12]. 

Due to their small size, the electrons are kept in 

discrete energies quantised states [13]. As a result of 

quantisation, the band gap is improved as compared to 

the bulk semiconductor, leading to a large increase in 

absorption and light emissions [13-14]. These features 

will allow the QDs to display great photocatalytic 

features. 

 

The MoS2/ZnO QDs synthesised by Chen et al. 

[15] was able to remove 96.5% of TC within 80 

minutes compared to bare MoS2 (38.4%) and bulk ZnO 

(25.6%). In another report, Wahab et al. [16] 

successfully prepared ZnO‐QDs to degrade 92% of 

acetaldehyde within 120 minutes; the efficiencies for 

Degussa P-25 and ZnO QDs were 70% and 92%, 

respectively. Also, Mohamed et al. [17] reported that 

the ZnO QDs photocatalytic effectiveness against 

methyl orange degradation (96%) was twice higher as 
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that of bulk ZnO. The small-sized QDs exhibited 

greater valence and lowest conduction band and 

released more energy [15-16]. 

 

Surface modification can also create fresh 

traps on the QDs’ surface, increasing the visibility and 

effectiveness of light-induced reactions on the QDs’ 

surface [18]. Bio-polymer-functioned ZnO has attracted 

attention in the biomedical and pharmaceutical industries 

due to its non-toxic and biodegradable characteristics 

[19]. Among various natural biopolymers, chitosan 

(poly-1,4, β-D-glucopyranosamine) has gained wide 

interest due to environmentally friendly, antimicrobial 

properties,  non-mutagenic and economically  

advantageous manufacturing process because of the 

hydroxyl and amino functional group of chitosan [19-

21]. In photocatalysis, the presence of various 

functional groups can provide additional adsorption 

sites and act as trapping sites for pollutants, thereby 

enhancing photocatalytic activity [22]. In the  

synthesis of QDs, chitosan can be used to control the 

growth of particle size and prevent the particles from 

coagulating. The chitosan backbone’s active amine 

and hydroxyl groups make it possible to bind with 

metal ions in the formation of ZnO QDs. This 

provides steric hindrance, which causes stable QDs to 

develop and improve their suspension in the water 

[23-24]. 

 

Hence, in this study, the microwave method 

was applied to synthesise chitosan-modified ZnO 

QDs (Chitosan-ZnO QDs) photocatalyst for the 

photodegradation of OTC. Upon comparison with 

other reported photocatalysts, the Chitosan-ZnO QDs 

displayed better photocatalytic degradation. The 

dosage required was lower, and the photodegradation 

reaction took less time in addition to being able to be 

synthesised through a simple synthesis route. 

 

EXPERIMENTAL 

 

Chemicals and Materials 

 

The following chemicals were purchased from QRëC 

Chemicals: Zinc acetate dihydrate (Zn (CH3COO)2 

.2H2O, 98%, Grade AR), sulphuric acid (H2SO4, 95-

97%), isopropanol (IPA, >99%), hydrochloric acid 

(HCl, 35%), and sodium hydroxide (NaOH, 99%, AR 

Grade) and Lithium hydroxide (LiOH, 99%, 

anhydrous). Ascorbic acid (AA, 99%) and potassium 

bromide salt (KBr, FTIR standard, 99%) and 

ethylenediaminetetraacetic acid (EDTA, 99.4-

100.6%) were purchased from Sigma Aldrich. 

Whereas absolute ethanol (C2H4OH, 99.5%) was from 

HmBEG Chemical and oxytetracycline dihydrate 

(OTC, 95%) was from Acros Organic. The chemicals 

were of analytical grade and were utilised directly. 

Distilled water was used to prepare all the solutions.  

 

 

The Preparation of Chitosan-ZnO QDs 

 

The ZnO QDs were synthesised according to Asok et 

al. [25] with some modifications. A LiOH solution 

was prepared by dissolving 0.0479 g of the LiOH in 

20 mL absolute ethanol. Separately, 0.2194 g of zinc 

acetate was dissolved in 20 mL of absolute ethanol. 

Both solutions were stirred for 30 minutes before 

mixing and stirred for another 30 minutes. Then, 25 

mg of chitosan flakes were dissolved in 10 mL of (1% 

v/v) acetic acid under continuous stirring. 

 

The chitosan solution (2 mL) was added to the 

ZnO QDs solution and stirred for 60 minutes to 

thoroughly disperse the ZnO QDs into the polymeric 

solution. The mixture was irradiated with a domestic 

microwave oven (SAMSUNG/MODEL No: MW61F) 

for 6 minutes at 100 W. A white precipitate was 

deposited at the bottom of the beaker when the 

mixture was cooled to room temperature. The powder 

was separated from the mother liquor through 

centrifugation, filtered and washed with ethanol 

several times to remove unreacted reactants. The 

sample was dried in an oven at 50 ℃ for 24 hr. 

 

Characterisation of Chitosan-ZnO QDs Catalyst  

 

A Fourier transform infrared (FTIR) spectrometer 

(Perkin Elmer, System 2000, United States) was used 

to examine the chemical bonding state of Chitosan-

ZnO QDs between the wavelengths of 400-4000 cm-

1. The surface morphology was done by scanning 

electron microscopy (SEM, Quanta FEG-650, United 

Kingdom). The morphological and particle size  

distribution was analysed using high-transmission 

electron microscopy (TECNAI G2 20 S-TWIN, FEI 

with an accelerating voltage of 200 kV, United 

States). The structural phases were characterised 

using an X-ray powder diffractometer (XRD, Bruker 

D8 Advance, Germany) of Cu Kα irradiation (λ 

=0.15406 nm) with a scanning rate of 0.02o min-1 and 

with 2θ from 10-80o. The photoluminescence (Perkin 

Elmer LS-55, United States) spectra were monitored 

using fluorescence spectroscopy with a Xenon lamp 

and 325 nm as the excitation source. The photo-

absorption and band gap energy were measured using 

UV-DRS (a Perkin Elmer Lambda 35 UV/Vis 

spectrometer, United States). The Brunauer-Emmet-

Teller (BET) average surface area of the catalyst was 

measured by using the instrument Micromeritic 

ASAP 2020 Surface Adsorption Porosimeter (SAP), 

United States. The degassing process was conducted 

at 120 ℃ for 12 hr.  

 

Photocatalytic Activity 

 

The photocatalytic activity was performed in a 

homemade reactor equipped with two fluorescent 
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lights (48 W). Using a Dual-Input Data Logging 

Radiometer (Model PMA 100, Pennsylvania, USA) 

equipped with visible and UVA+UVB detectors, the 

light intensity was determined to be 104 W m-2, and 

the residual UV leakage irradiance of the visible light 

was measured to be 0.40 W m-2. During the photo-

catalytic investigation, 10 mg of the Chitosan-ZnO 

QDs was dispersed into 50 mL of OTC solution (10 

mg L-1) at pH = 9 and stirred vigorously in the dark 

for 20 minutes to achieve adsorption-desorption 

equilibrium. The aliquot was collected every 10 

minutes, filtered with 0.22 µm membrane filter and 

measured using the UV-2600, Shimadzu (Japan) 

spectrometer. The OTC removal efficiency was 

calculated using the equation (1): 

 

OTC degradation (%R) = 
Co−Ct

C0
 × 100     (1) 

 

where C0 and Ct represent the concentration before 

light irradiation and concentration at a time interval (t, 

min). 

 
RESULTS AND DISCUSSION 

 

Characterisation 

 

The FTIR spectra of pure chitosan and Chitosan-ZnO 

QDs are shown in Figure 1. (a). The addition of ZnO 

QDs changed the vibration and stretching of the 

chitosan functional groups. The broad and intense 

absorption band in the range of 3200-3500 cm-1 is 

associated with the surface hydroxyl groups and N-H2 

[26-27]. The band at 2892 cm-1 is due to the 

asymmetric stretching vibration of -CH2 attributed to 

the pyranose ring of the chitosan. This peak appears 

to be less prominent in the spectrum of Chitosan-ZnO 

QDs [28-29]. This finding is similar to the studies 

reported by Zabihi et al. [30] and Lin et al. [27]. The 

vibrational mode of adsorbed CO2 from the ambient 

(air) on the samples’ surface may cause the observed 

band around 2343 cm-1 [31]. The band at 2151 cm-1 is 

related to the C-N group of C-NH2 [32]. The C=O 

stretching of amide I bonds could be seen at 1644 cm-

1 [33], whereas the stretching of C-N stretching of 

amide III can be seen at 1427 cm-1 [34]. The intensity 

of these peaks were observed to be reduced after 

incorporating ZnO QDs. The stretching vibration of 

the C-O-C position in the polysaccharide ring of CHT 

is observed at 1045 cm-1 [35, 33]. The reduction in the 

intensity of this peak after ZnO could indicate the 

formation of the O-Zn bond [26]. A new absorption 

band at 511 cm-1 in the IR spectrum of Chitosan-ZnO 

QDs is ascribed to the vibration of group metal-

oxygen (Zn-O) bond [19]. The immobilisation of ZnO 

QDs onto chitosan is shown by a drop in intensities 

and a band shift [36]. 
 

The XRD patterns of Chitosan-ZnO QDs 

(Figure 1. (b)) match with the wurtzite ZnO (JCPDS 

card no. 36-1451). The sharpness of the peaks 

indicates the high purity of the obtained Chitosan-

ZnO QDs [37]. A similar finding was reported by 

Bharathi et al. [38] and El-saied et al. [39]. The 

presence of chitosan is indicated by the presence of a 

broad peak at 2θ = 19.9o [39-42]. However, the XRD 

peak of chitosan was not observed in this study. The 

plane of the chitosan could have been destroyed or 

weakened by the intermolecular hydrogen bonding 

within the chitosan matrix due to the presence of ZnO, 

which alters the orientation of the polymer chains 

[39,42-43]. 
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Figure 1. (a) FTIR spectra and (b) XRD pattern 
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The average crystallite size (D) of Chitosan-

ZnO QDs was estimated using the Debye-Scherrer 

formula, equation (2):   

 

D = 
Kλ

β COS θ
     (2) 

 

where K is the Scherrer constant and equals to 0.9, λ 

presents the wavelength of X-ray radiation, β is the 

full width at half maximum, and θ is the diffraction 

angle. The mean crystallite size of 8.2 nm was 

estimated using the diffraction planes of (100), (002) 

and (101).  

 

The SEM analysis (Figure 2. (a)) revealed that 

Chitosan-ZnO QDs have spherically shaped 

morphology with pores. The architecturally porous 

material offers a large surface area for adsorption and 

photodegradation processes, increasing the adsorption 

of soluble contaminants [44]. The TEM (Figure 2. (b)) 

analysis showed the presence of spherically shaped 

particles with an average particle size of 8.84 nm. A 

histogram indicating the distribution of particle sizes 

is shown in Figure 2. (c). The d-spacings of (002) and 

(100) planes at 0.26 nm and 0.28 nm, respectively and 

were attributed to the wurtzite structure of ZnO 

(identified from HRTEM analysis (Figure 2. (d)). 

 

The band gap (Eg) of the Chitosan-ZnO QDs 

and its light absorption evaluated using the UV-DR 

spectroscopy is presented in Figure 3. (a). The 

Chitosan-ZnO QDs exhibits a pronounced absorption 

edge in the ultraviolet (UV) range (389 nm) with low 

absorption in the visible region [45]. This indicates 

that Chitosan-ZnO QDs can diffuse the incident light 

and absorb it repeatedly, which can improve its 

photocatalytic performance [46]. 

 

The Tauc’s plot method (insert in Figure 3. (a)) 

is used to estimate its optical band gap using the 

following equation (3): 

 
(ahv)2 = A(hv-Eg)   (3) 
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Figure 2. (a) SEM image, (b) TEM image, (c) histogram distribution of particle size, and (d) HRTEM image of 

Chitosan-ZnO QDs 
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where A is a constant and a, hv, and Eg are denoted as 

the absorption coefficient, photon energy, and optical 

band gap, respectively. The optical band gap is 

achieved by plotting (ahv) 2 versus (hv) and 

extrapolating the tangent of the curve to (ahv)2 = 0. 

The band gap energy of Chitosan-ZnO QDs was 

calculated to be 3.29 eV, which is lower than the 

reported bulk ZnO band gap (3.37 eV). The narrow 

band gap energy can lead to more photons being 

absorbed to create reactive oxidative species and more 

photogenerated carriers, which would play a big part 

in photocatalytic activity [47].  

 

The N2 adsorption-desorption isotherms 

(Figure 3. (b)) of Chitosan-ZnO QDs correspond to 

the type IV isotherm as per classification by the 

International Union of Pure and Applied Chemistry 

(IUPAC), which is typical for mesoporous materials 

[22]. The IUPAC classified the hysteresis loop as type 

H3. The presence of type H3 shows that the pores of 

Chitosan-ZnO QDs is slit-shaped [40]. The BET 

specific surface area was estimated at 31.88 m2 g-1. 

The Barrett-Joyner-Halenda (BJH) pore size 

distribution determined from the desorption branch 

was 11.7 nm and the total pore volume was 0.12 

cm3 g-1.  

 

The PL spectrum with Gaussian curve 

deconvolution is shown in Figure 3. (c). The UV 

peak in the PL spectra is theoretically related to 

band-to-band emission, whereas the visible  

emission results from defect levels [48]. Defects 

in quantum dots have recently attracted a lot of 

interest owing to the energy manifestation levels, 

which endow them with functionalities including 

induced carrier trapping, optical absorption , 

catalysis or electrical properties [49]. The peak at 

377 nm is a near-band edge (NBE) transition of 

ZnO, which corresponds to the recombination of 

electrons through an exciton collision [50]. The 

violet and blue emission peaks centred at 406 nm 

and 451 nm are attributed to the interstitial zinc 

(Zni) and zinc vacancy (VZn), respectively [51-52]. 

The green emission peaks centred at 487 and 

526 nm are attributed to the oxide antisite (OZn) 

and oxygen vacancy (V o), respectively [53].  

Whereas the yellow emission peak centred at 

587 nm is oxygen interstitial (O i) [52]. 
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Figure 3. (a) UV-DRS spectra, (b) BET, and (c) deconvoluted of PL spectrum 

 

 



51   Normawati Jasni, Anwar Iqbal, Noor Hana  Physicochemical Properties of Chitosan Modified ZnO  

       Hanif Abu Bakar and Ahmad Fadly Jusoh  QDs and its Feasibility for the Photocatalytic Degradation  

  of Oxytetracycline Under Fluorescent Light Irradiation 

 

  

-20 -10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

C
t/C

0

Time (min)

 Photolysis

 Chitosan-ZnO QDs

(a)

 

 

0 10 20 30 40

-l
n

 (
C

t/C
0
)

Time (min)

(b)

 

 

 
 

Figure 4. (a) Lowering of C/C0 vs time due to photodegradation of OTC and (b) determination of rate constant 

 

 

 

Photodegradation Study  

 

Photodegradation of OTC  

 

The photocatalytic performance of the Chitosan-

ZnO QDs was examined in the photodegradation 

of OTC under fluorescent light irradiation. The 

photocatalytic OTC removal profile is shown in 

Figure 4. (a). From the figure, the concentration of 

the OTC solution did not noticeably change 

without any photocatalyst (photolysis), showing 

its weak capability for self-decomposition [54]. It 

can be observed that the Chitosan-ZnO QDs have 

good adsorption capability due to the amine and 

hydroxyl groups in chitosan can serve as active 

si tes for  cap tur ing anionic con taminants . 

Additionally, the porous structure offers more 

opportunities for the adsorption/diffusion of  

substrate molecules and active species during the 

degradation reaction [55]. The total removal of 

OTC due to adsorption was 58.2%, whereas the 

removal percentage increased to 95.1% after 

irradiation for 40 minutes. The increase shows that 

a low level of visible light strength is adequate for 

Chitosan-ZnO QDs to demonstrate its photo-

catalytic activity. A greater number of reactive 

centres, which contribute to amine and hydroxyl 

groups, leads to more contaminants being 

adsorbed and speeds up the photocatalytic  

degradation process. Smaller particle size forms 

more particles per size unit, hence, increasing the 

surface area. Higher surface area enriches the 

interaction with OTC molecules, leading to higher 

effective degradation [56-57]. Multiple new 

transfer paths for the photogenerated e -/h+ pairs of 

the photocatalytic material were provided by the 

surface defects created on the Chitosan-ZnO QDs. 

This may greatly assist in delaying the process of 

electron-hole recombination and improving 

the photocatalytic degradation  performance of 

the material [58,16]. As presented in Figure 4. (b), 

the photocatalytic degradation kinetics were fitted 

to a pseudo-first-order kinetic law with reaction 

rate constants (k) displayed as 0.05705 min -1 

with a 0.99347 regression coefficient (R2) 

value.  

 

The photocatalytic activity of Chitosan-

ZnO QDs was compared with the photocatalysts 

reported in the literature. From Table 1, the 

photocatalysts show good photocatalytic ability, 

but a longer reaction time is needed and requires 

specialised lamps. In addition, the photocatalyst 

was synthesised through multiple synthesis steps. 

The Chitosan-ZnO QDs has several advantages 

compared to the photocatalysts. Chitosan-ZnO 

QDs can degrade OTC solutions with a 

comparatively small amount of catalyst, an 

economical cost experimental setup and a 

comparatively swift rate of degradation.
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Table 1. Comparison of the photocatalytic efficiency of OTC degradation for different photocatalyst 

 

Photocatalyst Condition Removal rate Ref. 

p-n heterojunction 

CdS QDs/LaMnO3 

composite 

[OTC] = 40 mg L-1 

Dosage = 400 mg L-1 

Light source = 300 W high pressure Xe 

lamp (cut-off wavelength 420 nm) 

70.0% after 60 minutes 

k = 0.01736 min-1 
[59] 

TiCN 

[OTC]= 10 mg L-1 

Dosage=1000 mg L-1 

Light source= 200 W LED lamp 

97.0% after 300 minutes 

k = 0.010 min-1 
[60] 

TiO2/WO3 

[OTC]= 20 mg L-1 

Dosage= 500 mg/L 

Light source= 20 W UVA 

100% after 60 minutes 

k = 0.082 min-1 
[61] 

CoFe@NSC 

[OTC]= 50 mg L-1 

Dosage= 300 mg L-1 

Light source= 300 W Xe lamp (λ >400 

nm) 

82.7 % after 60 minutes 

k = 0.00886 min-1 
[62] 

CF/rGO 

[OTC]= 10 mg L-1 

Dosage= 300 mg L-1 

Light source= 300 W Xe lamp (λ > 420 

nm) 

84.7% after 40 minutes 

k = 0.0410 min-1 
[63] 

BCNNS 

[OTC]= 10 mg L-1 

Dosage=75 mg L-1 

Light source= 300 W Xe lamp (λ > 420 

nm) 

72.0% after 60 minutes 

k= 0.025 min-1 
[64] 

Ag/WO3/g-C3N4 

[OTC]=10 mg L-1 

Dosage= 400 mg L-1 

Light source= 500 W Xe lamp 

97.74 % after 60 minutes 

k = 0.1164 min-1 
[65] 

Dual Z-scheme GCNQDs/ 

CTO/CFO 

[OTC]= 40 mg L-1 

Dosage= 600 mg L-1 

Light source= 500 W Xe lamp 

88.8% after 150 minutes 

k = 0.01409 min-1 
[66] 

Step-scheme AglnS2/ 

Agln5S8 heterojunction 

[OTC]= 20 mg L-1 

Dosage=500 mg L-1 

Light source=300 W Xe lamp (λ >400 

nm) 

90.5% after 180 minutes 

k = 0.012 min-1 
[67] 

Zn/ZnFe2O4/diatomite 

[OTC]= 10 mg L-1 

Dosage=1000 mg L-1 

Light source=300 W Xe lamp 

95.0% after 150 minutes 

k = 0.0098 min-1 
[68] 

ZnO/ZrO2 

[OTC]= 10 mg L-1 

Dosage=24000 mg L-1 

Light source=Spectroline XX 15N UV 

lamp 

60.0% after 120 minutes 

k = 0.0079 min-1 
[69] 

ZnO NPs 

[OTC]= 40 mg L-1 

Dosage=1000 mg L-1 

Light source=400 W Halogen lamp 

68.0% after 300 minutes 

k = 0.00299 min-1 
[70] 

Cu doped ZnO-MWCNT 

[OTC]= 50 mg L-1 

Dosage=500 mg L-1 

Light source=400 W Halogen lamp 

55.0% after 240 minutes 

k = 0.021 min-1 
[71] 

Chitosan-ZnO QDs  

[OTC]= 10 mg L-1 

Dosage= 200 mg L-1 

Light source= 48 W of two compact 

fluorescent lamp 

95.1% after 40 minutes 

k = 0.05705 min-1 

This 

study 
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Figure 5. The free radical trapping experiment 

 

 

Identification of Active Species, Photodegradation 

Mechanism and Reusability  

 

It is essential to identify the dominant active species 

to comprehend the photocatalytic mechanism relevant 

to the degradation of OTC over Chitosan-ZnO QDs. 

As shown in Figure 5, the removal efficiencies of OTC 

significantly decreased to 17.3% and 13.3% when AA 

(the quencher of O2
⦁−) and EDTA (the quencher of h+) 

were added, respectively. The IPA (⦁OH quencher) 

had little influence on the removal of OTC (85.3%). 

Hence, it is concluded that O2
⦁−and h+ play essential 

roles in the photodegradation of OTC across the 

Chitosan-ZnO QDs, whereas ⦁OH play a lesser role.  

 

Chitosan-ZnO QDs’ photocatalytic mechanisms 

were studied by investigating the valence band (VB) 

and conduction band (CB) positions. The Mulliken 

electronegativity theory was used to compute the 

valence band potential (EVB) empirically:  

 

EVB = X – Ee + 0.5 Eg        (4) 

 

ECB = EVB – Eg                 (5) 

 

where Eg and Ee are the band gap of the photocatalyst 

and electron energy in hydrogen scale (4.5 eV). While 

X is the electronegativity of ZnO, which is 5.79 eV. 

The calculated Eg value of Chitosan-ZnO QDs is 3.29 

eV. The ECB and EVB were -0.36 eV (in V vs. NHE) 

and 2.94 eV. Under visible light irradiation, electrons 

(e-) will be exited from the VB to the CB, leaving holes 

(h+) in the VB. The simultaneous spatial separation 

and reservation of the useful photogenerated charge 

carriers with strong redox ability results in high 

charge-separation efficiency [67]. Since the ECB 

potential of Chitosan-ZnO QDs (-0.36 eV vs. NHE) is 

more negative than E(O2/O2
⦁−) (-0.33 eV vs. NHE), 

the collected electrons on the CB can reduce surface 

adsorbed O2 to produce O2
⦁−radicals [67]. Since the 

EVB of Chitosan-ZnO QDs (2.94 eV) is more positive 

than the standard redox potential of OH-/H2O (2.72 

eV) and redox potential of H2O/⦁OH (2.38 eV vs. 

NHE) [61], the adsorbed OH- can be oxidised by 

reacting with accumulated h+ in the VB and could react 

with H2O to form ⦁OH [59]. Therefore, the efficient 

degradation of OTC was caused by a significant 

amount of O2
⦁− and h+ and a small amount of ⦁OH 

radicals. The charge transfer mechanism of the 

Chitosan-ZnO QDs was presented in Figure 6. (a) in 

light of the aforementioned experimental findings. 

The recyclable qualities for OTC photodegradation of 

the Chitosan-ZnO QDs were also examined. As shown 

in Figure 6. (b), a slight decrease was observed when 

the photocatalyst was used repeatedly. The reduction 

could be caused by the repeated separation process 

after each cycle and the loss of catalytic material 

during washing. 
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Figure 6. (a) Schematic of the charge transfer and (b) recycling process of photodegradation of OTC 

 

 

CONCLUSION 

 

Chitosan-modified ZnO quantum dots (Chitosan-ZnO 

QDs) can be prepared using a microwave method for 

the photodegradation of OTC under fluorescent light 

irradiation. The removal of OTC achieved was 95.1% 

within 40 min, in accordance to the pseudo-first-order 

kinetic model. The efficient photocatalytic activity of 

Chitosan-ZnO QDs is attributed to its narrow band gap 

energy (3.29 eV), which enhanced the light absorption 

and the presence of various defects. These features 

slowed down the recombination of photogenerated e-

/h+ pairs for better generation of photogenerated e-/h+ 

pairs and reactive oxygen species. The photocatalytic 

degradation of OTC is significantly influenced by h+ 

and O2
⦁−. After the fifth cycle, the photocatalyst is still 

performing admirably.  
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