Nur Amirah Saad¹, Mohamad Nurul Azmi^{1*} and Pinus Jumaryatno²

¹School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia ²Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia *Corresponding author (e-mail: mnazmi@usm.my)

The genus *Beilschmiedia* and *Endiandra* which are belong to the Lauraceae family, has been used extensively in traditional treatment. A rare class of tetracyclic and pentacyclic metabolites (i.e endiandric acids and the kingianin series) have been isolated and found specifically in these *Beilschmiedia* and *Endiandra* species. This current mini review is an update from the years 2000 – 2022 on phytochemical studies and biological activities together with the biosynthesis of the secondary metabolites from both genera. Previous literature reported that the chemical compounds from these two genera possess good biological activities such as anti-allergic, anti-asthmatic, anti-inflammatory, anti-bacterial, anti-tuberculosis, anti-plasmodial, anti-diabetic and anti-proliferative. The literatures and reference for this manuscript were obtained from various sources including SciFinder®, Reaxys®, ScienceDirect®, PubMed Central®, NIH National Library of Medicine, Google Scholar and The Plant List®. This review provides the update regarding the chemical structures, biological activities and biosynthesis of cyclic polyketides specifically in *Beilschmiedia* and *Endiandra* genera.

Key words: Lauraceae; *Beilschmiedia*; *Endiandra*; Cyclic polyketides; Endiandric acids; Kingianins

Received: September 2022; Accepted: November 2022

The Beilschmiedia and Endiandra are the genera which are belongs to Lauraceae family and locally known as Medang or Tejur [1]. The Beilschmiedia plants are mostly trees that grow up from 25 m to 35 m tall and it is the one of the largest pantropical genera in the Lauraceae family [1-2]. According to The Plant List Database, 287 names of this genus are accepted, and the remaining are either synonyms or unresolved names [1-2]. The Beilschmiedia species mostly grow in tropical climates, but a few are still native to the temperate regions. They are widely found in tropical Asia, Africa, Australia, New Zealand, Central America, Caribbean and South America [3]. In Southeast Asia, Beilschmiedia can typically be found in Vietnam, Myanmar, Thailand, Cambodia, Indonesia, Philippines, Malaysia and various islands such as Sumatra and Java [1]. The local people use this genus to treat stomach ache, digestive disorder and dysentery [1]. Meanwhile, Endiandra is a genus of evergreen trees in the Lauraceae or Laurel family. Over 125 species in this genus can be found in Southeast Asia, the Pacific region, and Australia [1,4-5]. Recently, only three species i.e E. introrsa [6-9], E. anthropophagorum [10-11] and E. kingiana [12-16], have been studied for their phytochemicals and this genus was reported to be used as a timber [1].

In scientific point of view, these two genera have been identified to contain polyketides in the form of endiandric acids and kingianins. Endiandric acids and kingianins are a unique type of polyketide found in this family and it is derived from late stage electrocyclization of polyenes. This class of compounds was reported to have interesting biological activities. Since Endiandra and Beilschmiedia plants are rare, there is limited research on them that has been published. Thus, the aim of this review is to provide an overview of chemical and pharmacological studies of cyclic polyketides including their biosynthesis isolated from Beilschmiedia and Endiandra genera from year 2000-2022. In this mini review, an extensive analysis and comparison of literatures were obtained from various sources including SciFinder®, Reaxys®, ScienceDirect®, PubMed Central®, NIH National Library of Medicine, Google Scholar and The Plant List®. has been employed.

Cyclic Polyketides: Endiandric Acids and Kingianins

Endiandric acids are formed exclusively by the *Beilschmiedia* and *Endiandra* species which have a distinctive tetracyclic carbon skeleton. Type A, type B, and type B' (Figure 1) are three primary skeletal

Mini review on Cyclic Polyketides from *Beilschmiedia* and *Endiandra* Species (Lauraceae): Chemical Structures, Biological Activities and Biosynthesis

Figure 1. Endiandric acids main skeleton.

Figure 2. Kingianin pentacyclic skeleton.

groups of these cyclic polyketides, which have eight chiral centers and normally isolated as a racemic mixture $[\alpha D] = 0^\circ$. Generally, these endiandric acids contain two cyclohexane, one cyclopentane, and one cyclobutane rings, and are commonly substituted with a phenyl ring and a carboxylic acid chain.

The isolated kingianin is an optically inactive compound in the form of a white powder or amorphous solid. A pentacyclic carbon skeleton (bicyclo[4.2.0] backbone), as shown in Figure 2, is a common feature of kingianins. Generally, the main skeleton of kingianins consists of 16 carbons of a pentacyclic moiety, including four *cis*-configured olefinic carbons. The remaining substituents are *N*-ethyl acetamide, butyric acid, and an acetic acid chain with two methylenedioxyphenyl groups. The position of the four substituents at C-1, C-8, C-1' and C-8' distinguishes them from each other. Two of the substituents were methylenedioxyphenyl groups, which were deduced from the absorption bands at λ_{max} 289 nm and 240 nm in the UV spectrum and confirmed by NMR analyses.

Cyclic Polyketides & Biological Activities

The first polyketides identified from a Lauraceae species are endiandric acids A-C (1-3) isolated from *E. Introrsa* [6-9]. The same compounds were also isolated from *B. oligandra* by Banfield *et al.* [17]. In addition, the first biological activity studies on endiandric acid were reported by Eder's group in 2004. They isolated endiandric acid H (4) from *B. fulva* and patented it for the treatment of allergic diseases, asthmatic diseases, inflammatory accompanying symptoms of asthma and diseases that can be treated by inhibition of c-Maf and NFAT [18]. Recent reports showed that endiandric acids possess various biological activities, such as antibacterial [19-21], anti-plasmodial [22], anti-tubercular [23], iNOS inhibitory activity [24] and cytotoxic properties [22,24].

Both species are extensively study since 2009. In 2009, eight endiandric acid derivatives namely beilschmiedic acids A-G (5-11) and beilschmiedin (12), were isolated from the bark of *B. anacardioides* [19-21]. Anti-bacterial activity of compounds 5-7 was tested in vitro against five microbe strains. In comparison to the reference antibiotic ampicillin (MICs value below 90.0 μ M), compound 7 exhibited the greatest potency against Bacillus subtilis, Micrococcus luteus, and Streptococcus faecalis (MICs value < 23.0 µM) [20]. This result indicating its significant potential as a new antibacterial agent against the gram-positive bacteria. Yang et al. were able to isolate nine endiandric acid analogues from B. erythrophloia [23,25] including beilcyclone A (13), endiandric acids I-J (14-15) and erythrophloins A-F (16-21). Among them, erythrophloin C (18) showed antitubercular activity against Mycobacterium tuberculosis H37Rv (MIC values of 50 µg/mL) and also significantly inhibited P-388 murine lymphocytic leukemia cells [23]. Huang et al. used a methanolic extract from the root of B. tsangii to screen for anti-inflammatory effects using an inducible nitric oxide synthase (iNOS) assay. The study reported potent inhibition of NO production, with no cytotoxicity against RAW 264.7 cells. Tsangibeilins A-D (22-23 and 29-30), endiandramides A (24) and B (28), and endiandric acids K-M (25-27) were isolated from the extract using a bioassay-guided fractionation technique. With IC₅₀ values of 9.59 and 16.40 μ M, compounds **24** and **28** were reported to have a significant iNOS inhibitory action [24,26].

Williams and co-workers published a series of endiandric acid analogues named beilschmiedic acids H-O (31-38), as well as known compounds, beilschmiedic acids A and C (5 and 7), that were isolated from a Gabonese B. species [27]. The compounds were then tested against NCI-H460 human lung cancer cells and a clinical isolate of methicillinresistant Staphylococcus aureus (MRSA 108) for their cytotoxic and anti-bacterial activity. Based on this screening, only compound 5 demonstrated significant activity in the NCI-H460 human cancer cell line assay, with an IC₅₀ value of 6.1 µM and showed strong antibacterial activity against S. aureus with an IC_{50} value of 10.0 µM [27]. Talonsti et al. isolated four beilschmiedic acids from the bark of E. cryptocaryoides, namely cryptobeilic acids A-D (39-42) and tsangibeilin B (23) [22]. These compounds showed moderate antiplasmodial activity against the chloroquino-resistant Plasmodium falciparum strain NF54 and anti-bacterial activities against Escherichia coli, Acinetobacter calcoaceticus and Pseudomonas stutzeri. A rapid NMRbased screening on ethyl acetate (EtOAc) extracts of Beilschmiedia and Endiandra species revealed eleven tetracyclic endiandric acids named ferrugineic acid A-K (43-53). These polyketides were isolated from B. ferruginea and assayed for Bcl-xL and Mcl-1 binding affinities. Based on the results, ferrugineic acid B (44), ferrugineic acid C (45) and ferrugineic acid J (52) exhibited a significant binding affinity for both antiapoptotic proteins Bcl-xL with the Ki value of 19.2 μ M, 12.6 μ M and 19.4 μ M respectively. While the K_i values for Mcl-1 were 14.0 μ M, 13.0 μ M and 5.2 μ M, respectively. However, ferrugineic acid D (46) only showed significant inhibiting activity for Mcl-1 with a K_i value of 5.9 μM [28].

In 2011, a novel polyketide series possessing a [4.2.0] bicyclic main skeleton named kingianins A-N (**54-67**) was reported by Leverrier and co-workers [12,13]. These compounds were only isolated from *E. kingiana* and hence were extensively studied for Bcl-xL binding affinity. These studies were evaluated by comparing against a fluorescently labelled reference compound (fluorescence tagged BH3 domain of the protein Bak Neosystem), as described by Qian *et al.* [29]. The laevorotatory enantiomers revealed more potent binding affinity against Bcl-xL with K_i in the range of 1.0 to 12 μ M. In addition, an earlier study by

Azmi *et al.* (2014) reported seven new tetracyclic endiandric acid analogues, i.e., kingianic acids A-G (**68-74**), endiandric acid M (**27**) and tsangibeilin B(**23**) which were isolated from the methanol crude extract of *Endiandra kingiana*'s bark [16]. Subsequently, all the compounds were assayed for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity upon various cancer cell lines. Consequently, kingianic acid E (**72**) showed moderate cytotoxic activity against human colorectal adenocarcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines with IC₅₀ values ranging from 15 to 17 μ M. However, kingianic acid C (**70**), kingianic acid F (**73**) and tsangibeilin B (**23**) only exhibited weak binding affinity towards the anti-apoptotic protein Mcl-1 [16].

Moreover, three new pentacyclic kingianins were isolated as racemic mixtures in 2015, i.e., kingianins O-Q (75-77) [15]. In continuation, the compounds kingianins A-Q were then screened for Mcl-1 binding affinity [15]. The assays were compared to the interaction of fluorescein-labelled peptides in Mcl-1. The study showed that kingianin G (60), kingianin H (61), kingianin J (63) and kingianin K (64) exhibited similar binding affinities with their respective (+)-counterparts. In addition, kingianin G (60), kingianin H (61), kingianin J (63) exhibited the most potent binding affinities to the protein Mcl-1 with K_i values between 2 and 4 μ M, while (-)- and (+)-kingianin K (64) and kingianin L (65) were less active $(13 < K_i < 17 \mu M)$. Structure-activity relationship study showed that the potency is sensitive to the substitution pattern on the pentacyclic core [15]. Recently, Azmi et al. studied the in vitro α glucosidase inhibition activity and molecular docking on four major compounds isolated from the methanol extract of E. kingiana bark. These were kingianic acid A (68), tsangibeilin B (23), kingianin A (54) and kingianin F (59). Among them, kingianin A and kingianin F showed good inhibition activity towards α -glucosidase with IC₅₀ value of 11.9 \pm 2.0 μ M and $19.7 \pm 1.5 \,\mu$ M, respectively. Molecular docking study revealed that both compounds were bound into the active site of the N-terminal of MGAM and thus agreed with the α -glucosidase inhibition activity results [14].

A summary of cyclic polyketides found in *Beilschmiedia* and *Endiandra* species are listed in Table 1 and Figure 3 (from 2000 – 2022). A total of 77 cyclic polyketide compounds were managing to be isolated and elucidated from both genera.

Table 1. List of polyketides isolated from Beilschmiedia and Endiandra species

Name of Polyketides	Name of Plants	Biological activity			
		Assay	Target	Results	
Endiandric acid A (1)	E. introrsa, B. oligandra	-	-	-	[6-9,17]
Endiandric acid B (2)	E. introrsa, B. erythrophloia	_	_	_	[6-9, 23,25]
Endiandric acid C (3)	E. introrsa	_	_	_	[36]
Endiandric acid H (4)	B. fulva	Anti-allergic Anti-asthmatic Anti-inflammatory		-	[18]
Beilschmiedic acid A (5)	<i>B. anacardioides,</i> <i>B. sp</i> (Gabonese species)	Anti-bacterial	Bacillus subtilis, Micrococcus luteus, Streptococcus faecalis	15 μM 12 μM 14 μM	[20]
		Cytotoxic activity	Large cell lung carcinoma (NCI-H460)	6.1 µM	[27]
Beilschmiedic acid B (6)	B. anacardioides	Anti-bacterial	Bacillus subtilis, Micrococcus luteus, Streptococcus faecalis	16 μM 15 μM 15 μM	[20]
	<i>B. anacardioides,</i> <i>B. sp</i> (Gabonese species)	Cytotoxic activity	Large cell lung carcinoma (NCI-H460)	Not active	[27]
Beilschmiedic acid C (7)	B. anacardioides	Anti-bacterial	Bacillus subtilis, Micrococcus luteus, Streptococcus faecalis	13 μM 30 μM 18 μM	[20]
Beilschmiedic acid D (8)	B. anacardioides	_	_	_	[20-21]
Beilschmiedic acid E (9)	B. anacardioides	_	-	_	[20-21]
Beilschmiedic acid F (10)	B. anacardioides	_	-	_	[20-21]
Beilschmiedic acid G (11)	B. anacardioides	_	-	_	[20-21]
Beilschmiedin (12)	B. anacardioides	_	-	_	[20-21]
Beilcyclone A (13)	B. erythrophloia	_	-	_	[23]
Endiandric acid I (14)	B. tsangii	_	-	_	[25]
Endiandric acid J (15)	B. tsangii	_	-	_	[25]
Erythrophloin A (16)	B. erythrophloia	_	-	_	[23]
Erythrophloin B (17)	B. erythrophloia	_	-	_	[23]
Erythrophloin C (18)	B. erythrophloia	Anti-tuberculosis	Mycobacterium tuberculosis H37Rv	$50 \mu g/mL$	[23]
Erythrophloin D (19)	B. erythrophloia	_	-	_	[23]
Erythrophloin E (20)	B. erythrophloia	_	-	_	[23]
Erythrophloin F (21)	B. erythrophloia	_	-	_	[23]
Tsangibeilin A (22)	B. tsangii	Anti-inflammatory	RAW 264.7 cell	$49.59\pm0.64~\mu M$	[24]
	B. tsangii	Anti-inflammatory	RAW 264.7 cell	$42.30\pm1.06\mu M$	[24]
	B. cryptocarvoides	Cytotoxic activity	L6 cell lines	21.5 µM	
		Anti-bacterial	Escheria coli 6r3, Acinetobacter calcoaceticus DSM 586,	50 μg/mL >50 μg/mL	
	, , , , , , , , , , , , , , , , , , ,		Pseudonamas stutzeri A1501, Serratia plymuthica C48	>50 µg/mL >50 µg/mL	[22]
Tsangibeilin B (23)		Anti-plasmodial	Chloroquine-resistant Plasmodium falciparum strain NF54	8.2. µM	-
		Bcl-xL/Bak binding affinity	Bcl-xL/Bak	$26\% \pm 2.5 @ 100 \mu\text{M}$	
		Mcl-1/Bid binding affinity	Mcl-1/Bid	$81\% \pm 2.4 @ 100 \mu\text{M}$	[16]
	E. kingiana	Cytotoxicity activity	HT-29 A549 PC3	$>100 \ \mu M$ 38.1 ± 0.1 μM $>100 \ \mu M$	
		Anti-diabetic	α -glucosidase	$97.4 \pm 0.6 \mu\text{M}$	[14]
Endiandramide A (24)	B. tsangii	-	- DAW 064 7 11	-	- [24, 26]
Endiandric acid K (25)	B. tsangii	Anti-inflammatory	KAW 204./ Cell	38.21 μM	-

Endiandria agid L (26)	D taan oii	Anti inflommatory	RAW 264 7 cell	39.56 <i>µ</i> M	
Endiandric acid L (26)	B. tsangti	Anti-inflammatory	RAW 264 7 cell	31.70 µM	[24, 26]
	D. isangu	Bcl-xL/Bak binding	Bcl-xL/Bak	$10\% \pm 0.5 @ 100 \mu M$	[24, 20]
		affinity	Der AL/Duk	1070 ± 0.5 € 100 µ111	[10]
	E. kingiana	Mcl-1/Bid binding affinity	Mcl-1/Bid	$39\% \pm 0.9 @ 100 \mu\text{M}$	[16]
	21 millional		HT-29	$>100 \mu\mathrm{M}$	[16]
			A549 PC3	$>100 \mu M$ $>100 \mu M$	
Endiandramide B (28)	B. tsangii	Anti-inflammatory	RAW 264.7 cell	16.40 µM	
Tsangibeilin C (29)	B. tsangii	_	-	-	[24, 26]
Tsangibeilin D (30)	B. tsangii	_	-	-	_
	B. sp	Cytotoxic activity	Large cell lung carcinoma	Not active	- [27]
Beilschmiedic acid H (31)		Anti-bacterial	(NCI-H460) Methicillin-resistant	Not active	
	(Gabonese species)		Staphylococcus aureus (MRSA		
			Large cell lung carcinoma	5.5 µM	
$\mathbf{D}_{\mathbf{r}}$	B. sp	Cytotoxic activity	(NCI-H460)	12 / 1	- [27]
Bellschmiedic acid I (32)	(Gabonese species)	Anti-bacterial	Methicillin-resistant Staphylococcus aureus (MRSA	$12 \mu g/mL$	[-/]
			108)		
Beilschmiedic acid J (33)	<i>B. sp</i> (Gabonese species)	-	-	-	[27]
	()	Cutotovia activity	Large cell lung carcinoma	5.9 µM	
Bailschmiedic acid $K(34)$	B. sp		(NCI-H460) Mothicillin registent	11 ug/mI	- [27]
Densemmedie acid K (54)	(Gabonese species)	Anti-bacterial	Staphylococcus aureus (MRSA	$11 \mu g/mL$	
			108)	$AA \mu \mathbf{M}$	
	B sn	Cytotoxic activity	(NCI-H460)	+.+ <i>μ</i> ινι	_ [27]
Beilschmiedic acid L (35)	(Gabonese species)	Anti-bacterial	Methicillin-resistant	$11 \mu\text{g/mL}$	
		This bacteria	108)		
	<i>B. sp</i> (Gabonese species)	Cytotoxic activity	Large cell lung carcinoma (NCI-H460)	$8.7 \mu M$	— [27]
Beilschmiedic acid M (36)		Anti-bacterial	Methicillin-resistant	$12 \mu \text{g/mL}$	
			Staphylococcus aureus (MRSA 108)		
	B. sp	Cytotoxic activity	Large cell lung carcinoma	19 µM	[27]
Beilschmiedic acid N (37)		Anti-bacterial	Methicillin-resistant	$13 \mu \text{g/mL}$	
	(Gabonese species)		Staphylococcus aureus (MRSA		
	<i>B. sp</i> (Gabonese species)	Cytotoxic activity	Large cell lung carcinoma	Not active	— [27]
Beilschmiedic acid O (38)			(NCI-H460) Methicillin_resistant	13 µg/mI	
		Anti-bacterial	Staphylococcus aureus (MRSA	15 µg/mL	
			108) I 6 cell lines	59.5 <i>u</i> M	
Cryptobeilic acid A (39)	B. cryptocaryoides	Cytotoxic activity		59.5 µm	[22]
		Anti-bacterial	Escheria coli 6r3, Acinetobacter calcoaceticus	$10 \mu g/mL$ >50 $\mu g/mL$	
			DSM 586,	$50 \mu g/mL$	
			Serratia plymuthica C48	>50 µg/mL	
		A (* 1 1* 1	Chloroquine-resistant	17.7 μM	
		Anti-piasmodiai	NF54		
Cryptobeilic acid B (40)	B. cryptocaryoides	Cytotoxic activity	L6 cell lines	20.4 µM	[22]
		Anti-bacterial	Escheria coli 6r3, Acinetobacter calcoaceticus	20 μg/mL 20 μg/mL	
			DSM 586,	10	
			Pseuaonamas stutzeri A1501, Serratia plymuthica C48	$>50 \mu g/mL$	
		Anti n1 1:-1	Chloroquine-resistant	5.35 µM	
		Anti-plasmodial	NF54		
Cryptobeilic acid C (41)	B. cryptocaryoides	Cytotoxic activity	L6 cell lines	59.3 μM	[22]
		Anti-bacterial	Escheria coli 6r3, Acinetobacter calcoaceticus	$>50 \ \mu g/mL$ $>50 \ \mu g/mL$	
			DSM 586,	200 pg mg	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Pseudonamas stutzeri A1501,	$>50 \mu g/mL$ > 50 $\mu g/mI$	
Anti-planmalial Planmatian planma in Networks Planmatian planma in Networks Planmatian planma in Networks Cryptobelic acid D(42) R. cryptocaryodor Cyloticia acidivity Labeler or lobaserial (id.) >500 grant. Statematic (id.) Statematic				Chloroquine-resistant	14.0 µM	-
$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$			Anti-plasmodial	Plasmodium falciparum strain		
$ \begin{array}{c c} \mbox{Cypubelic acid D (42)} & B, ergence cryother \\ \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				NF54	(10.M	
$ \begin{array}{c c} \label{eq:constraints} \mbox{Copposed} Coppose$			Cytotoxic activity	L6 cell lines	$61.0\mu\mathrm{M}$	
$ \begin{array}{c} \mbox{Protocheck and D (42)} B. crepticearowides \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$				Escheria coli 6r3,	$50 \mu \text{g/mL}$	_
$ \begin{array}{c} \mbox{Cryptobelic acid D (42)} & B. cryptocaryoides & The action of the second A 1501, 5 > 0 \ gcmL \\ \hline Peradonamo \ a 1501, 5 \ gcmL \\ \hline Peradonamo \ a 1501,$			Anti haatarial	Acinetobacter calcoaceticus	$>50 \mu g/mL$	
$ \begin{split} $	Cryptobeilic acid D (42)	B. cryptocaryoides	Anti-Dacteriai	DSM 580, Pseudonamas stutzeri A1501	$>50 \mu\text{g/mL}$	[22]
$ \begin{split} \begin{tabular}{ c c c c c } \hline Chloragaire esistant and Plasmodul Rel protein McI-1 Rel protein$				Serratia plymuthica C48	$>50 \mu g/mL$	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Chloroquine-resistant	$10.8\mu\mathrm{M}$	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Anti-plasmodial	Plasmodium falciparum strain		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bcl-xL/Bak binding	Protein Bcl-xL	$22\% + 2 @ 100 \mu M$	
Ferrugineic axid N (45) b. ferruginea artificity Mel-1 Bid binding artificity Protein Mel-1 0% @ 100 µM [25] Ferrugineic axid B (44) B. ferruginea artificity Bel-17, Bak binding Protein Mel-1 85% ± 2 @ 100 µM [28] Ferrugineic axid C (45) B. ferruginea artificity Bel-17, Bak binding Protein Mel-1 82% ± 2 @ 100 µM [28] Ferrugineic axid D (46) B. ferruginea artificity Bel-17, Bak binding Protein Mel-1 82% ± 2 @ 100 µM [28] Ferrugineic axid D (46) B. ferruginea artificity Bel-17, Bak binding Protein Mel-1 82% ± 2 @ 100 µM [28] Ferrugineic axid F (48) B. ferruginea artificity Bel-17, Bak binding Protein Mel-1 82% ± 2 @ 100 µM [28] Ferrugineic axid F (48) B. ferruginea artificity Bel-17, Bak binding Protein Mel-1 17% ± 1 @ 100 µM [28] Ferrugineic axid F (48) B. ferruginea artificity The 1 @ 100 µM [28] Ferrugineic axid I (51) B. ferruginea artificity The 1 @ 100 µM [28] Ferrugineic axid I (51) B. ferruginea Bel-17, Bak binding	Earmainaia agid A (13)	D formained	affinity			[20]
	renugineic acid A (43)	D. jerruginea	Mcl-1/Bid binding	Protein Mcl-1	0% @ 100 μ M	[20]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			affinity Dat uL /Data binding	Drotain Dal yI	600/ + 6 @ 100 ·· M	
			affinity	Protein BCI-XL	$00\% \pm 0 @ 100 \mu M$	
	Ferrugineic acid B (44)	B. ferruginea	Mcl-1/Bid binding	Protein Mcl-1	$85\% \pm 2$ @ $100 \mu M$	- [28]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			affinity			
			Bcl-xL/Bak binding	Protein Bcl-xL	$93\% \pm 3 @ 100 \mu\text{M}$	[20]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ferrugineic acid C (45)	B. ferruginea	Mcl-1/Bid binding	Protein Mcl-1	82% + 2 @ 100 µM	[28]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			affinity		$02\pi0 \pm 2 \approx 100 \mu \mathrm{M}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bcl-xL/Bak binding	Protein Bcl-xL	$39\%\pm3~@~100\mu\mathrm{M}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ferrugineic acid D (46)	B. ferruginea	affinity Mol 1/Did hinding	Drotoin Mol 1	920/ + 2 @ 100M	[28]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			affinity	FIOtenii Mci-1	$82\% \pm 2 @ 100 \mu W$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bcl-xL/Bak binding	Protein Bcl-xL	$20\%\pm1~@~100\mu\mathrm{M}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ferrugineic acid E (47)	B. ferruginea	affinity	5		[28]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	5 0	Mcl-I/Bid binding	Protein Mcl-1	$14\% \pm 3 @ 100 \mu M$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bcl-xL/Bak binding	Protein Bcl-xL	$7\% \pm 1 @ 100 \mu M$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ferrugineic acid F (48)	R forruginga	affinity		1	[28]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	renuginere uera r (16)	D. jerruginea	Mcl-1/Bid binding	Protein Mcl-1	0% @ 100 µM	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bcl-xL/Bak binding	Protein Bcl-xL	$17\% + 1 @ 100 \mu M$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Formarinaia agid C (40)	D formation	affinity		1770 <u>=</u> 1 0 100 µm	[28]
AffinityFerrugineic acid H (50)B. ferruginea $\overline{ \overline{-}$ $\overline{-}$ Ferrugineic acid I (51)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $35\% \pm 1 @ 100 \mu M$ affinity[28]Ferrugineic acid I (52)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $58\% \pm 7 @ 100 \mu M$ affinity[28]Ferrugineic acid K (53)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 @ 100 \mu M$ affinity[28]Ferrugineic acid K (53)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 @ 100 \mu M$ affinity[28]Kingianin A (54)E. kingianaBel-xL/Bak binding affinityProtein Bcl-xL 213 ± 53 [12] affinityKingianin B (55)E. kingianaBel-xL/Bak binding affinityProtein Mcl-1 >33 [15] affinityKingianin C (56)E. kingianaBel-xL/Bak binding affinityBcl-xL/Bak affinity >300 [12] affinityKingianin D (57)E. kingianaBel-xL/Bak binding affinityBcl-xL/Bak affinity >33 [15] affinity	Ferrugiliele acid (49)	B. ferruginea	Mcl-1/Bid binding	Protein Mcl-1	$3\%\pm1\ @\ 100\ \mu M$	
Ferrugineic acid H (50)E. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $35\% \pm 1 \oplus 100 \mu M$ [28]Ferrugineic acid I (51)B. ferruginea $affinity$ Bel-xL/Bak binding affinityProtein Mel-1 $7\% \pm 2 \oplus 100 \mu M$ [28]Ferrugineic acid J (52)B. ferrugineaBel-xL/Bak binding affinityProtein Mel-1 $81\% \pm 3 \oplus 100 \mu M$ [28]Ferrugineic acid K (53)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 \oplus 100 \mu M$ [28]Kingianin A (54)E. kingianaBel-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 \oplus 100 \mu M$ [28]Kingianin B (55)E. kingianaBel-xL/Bak binding affinityProtein Bcl-xL 213 ± 53 [12]Kingianin B (55)E. kingianaBel-xL/Bak binding affinityProtein Mel-1 >33 [15]Kingianin C (56)E. kingianaBel-xL/Bak binding affinityBel-xL/Bak >300 [12]Kingianin D (57)E. kingianaBel-xL/Bak binding affinityBel-xL/Bak >300 [12]Kingianin D (57)E. kingianaBel-xL/Bak >300 [12]Kingianin D (57)Bel-xL/Bak binding affinityProtein Mel-1 >33 [15]AffinityBel-xL/Bak binding affinityBel-xL/Bak >300 [12]Kingianin D (57)Bel-xL/Bak binding affinityBel-xL/Bak >330 [12]			affinity			
Ferrugineic acid I (51)B. ferrugineaBcl-xL/Bak binding affinityProtein Bcl-xL $35\% \pm 1 @ 100 \mu M$ (28)[28]Ferrugineic acid J (52)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $58\% \pm 7 @ 100 \mu M$ affinity[28]Ferrugineic acid J (52)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $58\% \pm 7 @ 100 \mu M$ affinity[28]Ferrugineic acid K (53)B. ferrugineaBel-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 @ 100 \mu M$ affinity[28]Kingianin A (54)E. kingianaBel-xL/Bak binding affinityProtein Bcl-xL 213 ± 53 [12] affinityKingianin B (55)E. kingianaBel-xL/Bak binding affinityProtein Mcl-1 >33 [15] affinityKingianin B (55)E. kingianaBel-xL/Bak binding affinityBel-xL/Bak binding affinityBel-xL/Bak>300[12] affinityKingianin D (57)E. kingiana affinityBel-xL/Bak binding affinityBel-xL/Bak>300[12] affinityKingianin D (57)E. kingiana affinityBel-xL/Bak binding affinityBel-xL/Bak>300[12] affinity	Ferrugineic acid H (50)	B. ferruginea			_	
Ferrugineic acid I (51)B. ferrugineaMcl-1/Bid binding affinityProtein Mcl-1 $7\% \pm 2 @ 100 \mu M$ [28]Ferrugineic acid J (52)B. ferrugineaBcl-xL/Bak binding affinityProtein Bcl-xL $58\% \pm 7 @ 100 \mu M$ [28]Ferrugineic acid K (53)B. ferrugineaBcl-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 @ 100 \mu M$ [28]Ferrugineic acid K (53)B. ferrugineaBcl-xL/Bak binding affinityProtein Bcl-xL $22\% \pm 3 @ 100 \mu M$ [28]Kingianin A (54)E. kingianaBcl-xL/Bak binding affinityProtein Bcl-xL 213 ± 53 [12]Mcl-1/Bid binding affinityProtein Mcl-1 >33 [15]Kingianin B (55)E. kingianaBcl-xL/Bak binding affinityBcl-xL/Bak >300 [12]Kingianin B (55)E. kingianaBcl-xL/Bak binding affinityBcl-xL/Bak >300 [12]Kingianin D (57)E. kingianaBcl-xL/Bak binding affinityBcl-xL/Bak >300 [12]Kingianin D (57)E. kingianaBcl-xL/Bak binding affinityBcl-xL/Bak >300 [12]Kingianin D (57)E. kingianaBcl-xL/Bak binding affinityBcl-xL/Bak >300 [12]			Bcl-xL/Bak binding	Protein Bcl-xL	$35\% \pm 1$ @ $100 \mu M$	[28]
affinity Protein Bcl-xL 58% ± 7 @ 100 µM [28] Ferrugineic acid J (52) B. ferruginea	Ferrugineic acid I (51)	B. ferruginea	Mcl-1/Bid binding	Protein Mcl-1	$7\% \pm 2 @ 100 \mu M$	[20]
			affinity		····	
Ferrugineic acid J (52)B. ferruginea $affinity[28]Mcl-1/Bid bindingaffinityProtein Mcl-181\% \pm 3 @ 100 \mu M[28]Ferrugineic acid K (53)B. ferrugineaaffinityBcl-xL/Bak bindingaffinityProtein Bcl-xL22\% \pm 3 @ 100 \mu M[28]Kingianin A (54)E. kingianaBcl-xL/Bak bindingaffinityProtein Mcl-10\% @ 100 \mu M[28]Kingianin B (55)E. kingianaBcl-xL/Bak bindingaffinityProtein Mcl-10\% @ 100 \mu M[14]Kingianin B (55)E. kingianaBcl-xL/Bak bindingaffinityProtein Mcl-1>33[15]Kingianin B (55)E. kingianaBcl-xL/Bak bindingaffinityBcl-xL/Bak>300[12]Kingianin D (57)E. kingianaBcl-xL/Bak bindingaffinityBcl-xL/Bak>300[12]Kingianin D (57)E. kingianaBcl-xL/Bak bindingaffinityBcl-xL/Bak>300[12]Kingianin D (57)E. kingianaBcl-xL/Bak bindingaffinityBcl-xL/Bak>300[12]Kingianin D (57)E. kingianaaffinityBcl-xL/Bak bindingaffinityBcl-xL/Bak>300[12]Kingianin D (57)E. kingianaaffinityBcl-xL/Bak bindingaffinityBcl-xL/Bak>300[12]Kingianin D (57)E. kingianaaffinityBcl-xL/Bak bindingaffinityBcl-xL/Bak>33[15]$			Bcl-xL/Bak binding	Protein Bcl-xL	$58\%\pm7~@~100\mu\mathrm{M}$	-
$\frac{1}{10000000000000000000000000000000000$	Ferrugineic acid J (52)	B. ferruginea	Mcl-1/Bid binding	Protein Mcl-1	$81\% + 3 @ 100 \mu M$	[28]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			affinity		$0170 \pm 5 \approx 100 \mu M$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Bcl-xL/Bak binding	Protein Bcl-xL	$22\%\pm3$ @ $100\mu\mathrm{M}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ferrugineic acid K (53)	B. ferruginea	affinity Mol 1/Bid binding	Ductoin Mol 1	00/ @ 100M	[28]
Kingianin A (54)E. kingianaBcl-xL/Bak binding affinityProtein Bcl-xL 213 ± 53 [12]Mcl-1/Bid binding affinityProtein Mcl-1>33[15]Mcl-1/Bid binding affinityProtein Mcl-1>33[15]Kingianin B (55)E. kingianaBcl-xL/Bak binding 		<i>y</i> 0	affinity	Protein Mci-1	0% @ 100 µM	
$\frac{\operatorname{affinity}}{\operatorname{Mcl-1/Bid\ binding}} \operatorname{Protein\ Mcl-1} > 33 [15]$ $\frac{\operatorname{affinity}}{\operatorname{Anti-diabetic}} - \operatorname{a-glucosidase} 11.9 \pm 2.0 \mu\mathrm{M} $ [14] $\underbrace{E. \ kingiana}_{\operatorname{affinity}} - \operatorname{Bcl-xL/Bak\ binding}_{\operatorname{affinity}} - \operatorname{Bcl-xL/Bak\ solution} - \operatorname{Bcl-xL/Bal\ solution} - \operatorname{Bcl-xL/Bal\ solution} - \operatorname{Bcl-xL/Bal\ solution} - Bcl-$	Kingianin A (54)	E. kingiana	Bcl-xL/Bak binding	Protein Bcl-xL	213 ± 53	[12]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			affinity			
$\frac{a \text{Inity}}{\text{Anti-diabetic}} = \frac{\alpha - \text{glucosidase}}{\alpha - \text{glucosidase}} = \frac{11.9 \pm 2.0 \mu\text{M}}{[14]}$ $\frac{E. kingiana}{\text{Kingianin B (55)}} = \frac{\text{Bcl-xL/Bak binding}}{\text{Mcl-1/Bid binding}} = \frac{\text{Bcl-xL/Bak}}{\alpha + 1000} = \frac{1000 \text{ GeV}}{\alpha + 10000} = \frac{1000 \text{ GeV}}{\alpha + 100000} = \frac{10000 \text{ GeV}}{\alpha + 100000000000000000000000000000000000$			Mcl-1/Bid binding	Protein Mcl-1	>33	[15]
E. kingianin B (55) E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin B (55) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15] Kingianin C (56) Kingianin D (57) E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak binding Bcl-xL/Bak binding affinity Protein Mcl-1 >33 [15] Kingiana Bcl-xL/Bak binding affinity Protein Mcl-1 >33 [15] Kingianin D (57)			Anti-diabetic	a-glucosidase	$11.9 \pm 2.0 \mu M$	[14]
E. kinglana Bcl-XL/Bak binding Bcl-XL/Bak >300 [12] Kinglanin B (55)		F 1: :			. 200	[14]
Kingianin B (55) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15] <i>Mcl-1/Bid binding</i> affinity Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin C (56) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15] <i>Kingianin C</i> (56) Bcl-xL/Bak binding affinity Protein Mcl-1 >33 [15] <i>Kingianin D</i> (57) <i>E. kingiana</i> Mcl-1/Bid binding affinity Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin D (57) <i>Mcl-1/Bid binding</i> affinity Protein Mcl-1 >33 [15]	Kingianin B (55)	E. kingiana	affinity	BCI-XL/Bak	>300	[12]
E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin C (56) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15] E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin D (57) E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin D (57) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15]			Mcl-1/Bid binding	Protein Mcl-1	>33	[15]
E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin C (56) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15] E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin D (57) E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15]			affinity			
Kingianin C (56) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15] E. kingiana Bcl-xL/Bak binding affinity Bcl-xL/Bak >300 [12] Kingianin D (57) Mcl-1/Bid binding affinity Protein Mcl-1 >33 [15]	Kingianin C (56)	E. kingiana	BcI-xL/Bak binding	Bcl-xL/Bak	>300	[12]
E. kingiana Bcl-xL/Bak binding Bcl-xL/Bak >300 [12] Mcl-1/Bid binding Protein Mcl-1 >33 [15] affinity affinity [15]			Mcl-1/Bid binding	Protein Mcl-1	>33	[15]
E. kingiana Bcl-xL/Bak binding Bcl-xL/Bak >300 [12] Kingianin D (57) Affinity Mcl-1/Bid binding Protein Mcl-1 >33 [15]			affinity	-		
Kingianin D (57) animity Mcl-1/Bid binding affinity Protein Mcl-1		E. kingiana	Bcl-xL/Bak binding	Bcl-xL/Bak	>300	[12]
affinity	Kingianin D (57)		Mcl-1/Bid binding	Protein Mcl-1	>33	[15]
			affinity			[-0]

Kingianin E (58)	E. kingiana	Bcl-xL/Bak binding	Bcl-xL/Bak	>300	[12]
		Mcl-1/Bid binding	Protein Mcl-1	>33	[15]
Kingianin F (59)		Bcl-xL/Bak binding	Bcl-xL/Bak	231 ± 47	[12]
	E. kingiana	Mcl-1/Bid binding	Mcl-1/Bid	>33	[15]
		Anti-diabetic	a-glucosidase	$19.7\pm1.5\mu M$	[14]
Kingianin G (60)	E. kingiana	Bcl-xL/Bak binding	Bcl-xL/Bak	2 ± 0	[12]
Kingianin H (61)	E. kingiana	Bcl-xL/Bak binding	Bcl-xL/Bak	18 ± 7	[12]
Kingianin I (62)	E. kingiana	Bcl-xL/Bak binding	Bcl-xL/Bak	18 ± 3	[12]
Kingianin I (63)	E. kingiana	affinity Bcl-xL/Bak binding	Bcl-xL/Bak	29 ± 6	[12]
	E. kingiana	affinity Bcl-xL/Bak binding	Bcl-xL/Bak	80 ± 36	[12]
Kingianin K (64)		affinity		26 - 11	[12]
Kingianin L (65)	E. kingiana	Bcl-xL/Bak binding affinity	Bcl-xL/Bak	36±11	[12]
	E. kingiana	Bcl-xL/Bak binding affinity	Bcl-xL/Bak	236 ± 34	[12]
Kingianin M (66)		Mcl-1/Bid binding	Protein Mcl-1	>33	[15]
	E. kingiana	Bcl-xL/Bak binding	Bcl-xL/Bak	177 ± 9	[12]
Kingianin N (67)		Mcl-1/Bid binding	Protein Mcl-1	19 ± 7	[15]
		Bcl-xL/Bak binding	Bcl-xL/Bak	$21\% \pm 1.8 @ 100 \mu\text{M}$	[16]
Vincippio poid A (68)	E. kingiana	Mcl-1/Bid binding	Mcl-1/Bid	$36\% \pm 2.3 @ 100 \mu\text{M}$	[16]
Kinglanic acid A (00)		Cytotoxicity activity	HT-29 A549 PC3	$35.0 \pm 0.2 \mu\text{M}$ $85.4 \pm 0.2 \mu\text{M}$ $> 100 \mu\text{M}$	[16]
Kingianic acid B (69)	E. kingiana	_	-		[16]
		Bcl-xL/Bak binding	Bcl-xL/Bak	$25\%\pm1.7$ @ $100\mu M$	[16]
	E. kingiana	Mcl-1/Bid binding	Mcl-1/Bid	$75\% \pm 1.1 @ 100 \mu\text{M}$	[16]
Kingianic acid C (70)		affinity	HT-29	>100 μ M	[16]
		Cytotoxicity activity	PC3	$>100 \mu M$	
Kingianic acid D (71)	E. kingiana	-	_	-	[16]
		Bcl-xL/Bak binding affinity	Bcl-xL/Bak	$1\% \pm 0.8 @ 100 \mu\text{M}$	[16]
Kingianic acid E (72)	E. kingiana	Mcl-1/Bid binding affinity	Mcl-1/Bid	$8\% \pm 5.5 \ @ \ 100 \ \mu M$	[16]
-		Cytotoxicity activity	HT-29 A549	$\begin{array}{c} 17.1 \pm 0.1 \ \mu M \\ 15.4 \pm 0.2 \ \mu M \end{array}$	[16]
		Bcl-xL/Bak binding	PC3 Bcl-xL/Bak	$\frac{77.2 \pm 0.2 \mu\text{M}}{22\% + 2.9 @ 100 \mu\text{M}}$	[16]
Kingianic acid F (73)	E. kingiana	affinity	Del AL/Dak	2270 ± 2.9 € 100 µM	[10]
	21 141781444	Mcl-1/Bid binding affinity	Mcl-1/Bid	$80\% \pm 0.7 @ 100 \mu\text{M}$	[16]
Kingianic acid G (74)	E. kingiana	Bcl-xL/Bak binding affinity	Bcl-xL/Bak	$19\% \pm 1.6 @ 100 \mu\text{M}$	[16]
		Mcl-1/Bid binding affinity	Mcl-1/Bid	$47\% \pm 2.9 @ 100 \mu\text{M}$	[16]
Kingianin O (75)	E. kingiana	Mcl-1/Bid binding affinity	Mcl-1/Bid	>33	[15]
Kingianin P (76)	E. kingiana	Mcl-1/Bid binding affinity	Mcl-1/Bid	30 ± 1	[15]
Kingianin Q (77)	E. kingiana	Mcl-1/Bid binding affinity	Mcl-1/Bid	>33	[15]
		unning			

Figure 3. Polyketides isolated from Beilschmiedia and Endiandra species

Mini review on Cyclic Polyketides from *Beilschmiedia* and *Endiandra* Species (Lauraceae): Chemical Structures, Biological Activities and Biosynthesis

Figure 3. Polyketides isolated from Beilschmiedia and Endiandra species (con't)

ЮH

ЮH

ΟН

OH

Figure 3. Polyketides isolated from Beilschmiedia and Endiandra species (con't)

Figure 3. Polyketides isolated from Beilschmiedia and Endiandra species (con't)

184 Nur Amirah Saad, Mohamad Nurul Azmi and Pinus Jumaryatno

Mini review on Cyclic Polyketides from *Beilschmiedia* and *Endiandra* Species (Lauraceae): Chemical Structures, Biological Activities and Biosynthesis

Figure 3. Polyketides isolated from Beilschmiedia and Endiandra species (con't)

Figure 4. Polyketides synthase extender unit

The biosynthesis of polyketides begins with the condensation of the starter unit i.e typically acetyl-CoA (**78**) / propionyl-CoA (**79**) and with an extender unit (commonly malonyl-CoA (**80**) or methylmalonyl-CoA (**81**)), followed by decarboxylative condensation unit (Claisen condensation) (Figure 4). The polyketide

chains produced by minimal polyketide synthases (PKSs) and often derivatized and modified into bioactive natural products [30-33].

Endiandric acids which are polycyclic compounds, generally possess eight asymmetric centres.

It occurs as a racemic mixture rather than enantiomeric form. This is a rather unusual observation for naturally occurring compounds resulting from both shikimate and acetate pathways [34]. This observation led Black *et al.* to propose a hypothetical "biogenesis" pathway for these compounds from achiral precursors by a series of non-enzymatic electrocyclization [35-37]. Black's hypothesis suggests a cascade of reactions, the 8π - 6π electrocyclic cascade and it is probably the most elegant and classical display of the power of electrocyclization reactions in nature [39-40]. Based on this biomimetic hypothesis, Nicolaou *et al.* and his team reported a total synthesis of endiandric acid A and its analogues [38-39]. It is specifically proposed that these polycyclics are formed from phenyl polyenes, which contain a central conjugated tetraene unit. For the formation of endiandric acid type B such as endiandric acids A (1) and B (2), which are all-*cis*-isomers (82a), or the *trans-,cis-,trans*-isomer (82b), the polyenes undergone two continuous non-enzymatic electrocyclization reactions which are 8π conrotatory and 6π disrotatory, to form intermediate precursors of endiandric acids E and F. In conclusion, the example of biosynthesis for both type A and type B endiandric acid is basically through conrotatory 8π electron cyclization, disrotatory 6π electron cyclization and Diels-Alder intramolecular cyclization. These conversions are shown in Scheme 1.

Scheme 1. Biosynthesis of endiandric acids A, B, and C

Scheme 2. Biogenetic hypothesis of monomers of kingianins

Kingianins are unique, complex and stereochemically rich pentacyclic core which are specifically isolated from the bark of E. kingiana. This compound was the first kingianin reported and it is a dimer of bicyclo[4.2.0]octadiene. In the beginning, Litaudon proposed a biosynthesis pathway involving spontaneous Diels-Alder dimerization [12-13]. Based on these observation and hypothesis above, the biogenesis of kingianins involves a series of electrocyclization from an achiral precursor (Scheme 2). The polyketide 83 might lead to a phenyl propylene unit with a central conjugated tetraene. The 8π conrotatory electrocyclization of the all-cis tetraene 83a or the trans, *cis, cis, trans* isomer **83b**, followed by a 6π disrotatory electrocyclization would lead to bicyclo 84 and 85. Finally, an intermolecular Diels-Alder $(4\pi s + 2\pi s)$ cycloaddition would provide kingianins. Sharma et al. reported the biomimetic synthesis of the monomer based on the electrocyclization strategy, but all attempts to induce thermal dimerization was failed [43]. Recent publications reported that a radical cation Diels-Alder (RCDA) dimerization could explain the formation of the kingianins in nature. The first total synthesis of kingianin A (45) was reported by Lim and Parker [44-45]. Their synthetic approach centred on a novel intramolecular radical cation activated Diels-Alder (RCDA) cycloaddition of a tethered bicyclo[4.2.0]octadienyl monomer. At the same time, Drew et al. reported total syntheses of the kingianin A (**45**), D (**48**) and F (**50**) employing the same approach [46]. Both groups employed the Ledwith-Weits salt to initiate the electron transfer reaction. These are the evidence that kingianins are cyclized with non-spontaneous Diels-Alder cyclization.

The kingianin skeleton could generated from non-spontaneous Diels-Alder reaction between two bicyclo[4.2.0]octa-2,4-diene. The cyclization process could explain the formation of racemic mixtures of kingianin compounds as shown in Figure 5. The relative configuration of the pentacyclic carbon skeleton is identical for all kingianins, but the substituents located on the cyclobutane of each monomer are systematically in an *anti*-configuration. The all *cis* configuration at the ring conjugations is due to a series of electrocyclizations involved in their biogenesis. The *anti*-configuration of the cyclobutane rings may be explained by the last step of their biogenesis. The two monomers are indeed in parallel plane during the Diels-Alder reaction. An *anti*-

Figure 5. Possible steric hindrance in the intermolecular cyclization

orientation of the two cyclobutanes with respect to the reaction plane could be more sterically favorable (Figure 5). As a conclusion a tandem 8π conrotatory and disrotatory 6π electrocyclization of all *cis* tetraene or *trans-*, *cis-*, *cis-*, *trans-*, yielded the monomer of kingianin; the sequence closely resembled the endiandric acid electrocyclization cascade. Then, an intermolecular Diels-Alder ($4\pi s + 2\pi s$) cycloaddition would be result in kingianin A [47].

CONCLUSION

The phytochemical investigation of Beilschmiedia and Endiandra species resulted in the isolation of cyclic polyketides which are endiandric acids and kingianins series. It was proven that endiandric acids and kingianins are major secondary metabolites for both genera. Some species were found to possess medical properties and used to treat ailments such as anti-allergic, anti-asthmatic, anti-inflammatory, antibacterial, anti-tuberculosis, anti-plasmodial, antidiabetic and anti-proliferative. The endiandric acids and kingianins are biosynthesized through both shikimate and acetate pathways, which finally enters the 8π - 6π electrocyclic cascade reaction followed by Diels-Alder cycloaddition. However, it was still lacking in *in vivo* studies to prove the biological activities. Further research and clinical test can strengthen the properties of chemical constituents isolated in Beilschmiedia and Endiandra species.

ACKNOWLEDGEMENTS

This study was supported by Universiti Sains Malaysia (USM) and this work was funded through Research Grant RUI (Individual) 1001.PKIMIA.8012310. The authors gratefully acknowledge Majlis Amanah Rakyat for the financial support under Graduate Excellence Programme (GrEP).

CONFLICT OF INTEREST

We declare that there is no conflict of interest.

REFERENCES

- 1. Burkill, I. H. (1966) A dictionary of the economic products of the Malay Peninsula, Governments of the Straits Settlements and Federated Malay States.
- "Beilschmiedia The Plant List." Accessed August 10, 2021. http://www.theplantlist.org/ 1.1/browse/A/Lauraceae/Beilschmiedia/
- 3. Nishida, S. (1999) Revision of *Beilschmiedia* (Lauraceae) in the Neotropics. *Annals of the Missouri Botanical Garden*, **86(3)**, 657-701.
- 4. Ng, F. S. P and Whitmore, T. C. (1989) Tree Flora of Malaya: A Manual for Foresters, Longman Kuala Lumpur, Malaysia.
- "Lauraceae The Plant List." Accessed August 10, 2022. http://www.theplantlist.org/1.1/browse/ A/Lauraceae/
- Bandaranayake, W. M., Banfield, J. E., Black, D. S. C., Fallon, G. D. and Gatehouse, B. M. (1981) Constituents of *Endiandra* species. I. Endiandric acid, a novel carboxylic acid from *Endiandra Introrsa* (Lauraceae), and a derived lactone. *Australian Journal of Chemistry*, 34(8), 1655– 1667.
- Bandaranayake, W. M., Banfield J. E. and Black, D. S. C. (1982) Constituents of *Endiandra* species. II:(*E*)-4-(6'-phenyltetracyclo[5,4,2,03,13, 010,12]trideca-4',8'-dien-11'-yl)but-2-enoic acid from *Endiandra Introrsa* (Lauraceae) and a derived lactone. *Australian Journal of Chemistry*, 35(3), 557–565.
- Bandaranayake, W. M., Banfield, J. E., Black, D. S. C., Fallon, G. D. and Gatehouse, B. M. (1982) Constituents of *Endiandra* species. III: 4-[(*E*,*E*)-5'-phenylpenta-2',4'-dien-1'-yl]tetra-cyclo[5,4,0, 02,5,03,9]undec-10-ene-8-carboxylic acid from

Endiandra Introrsa (Lauraceae). Australian Journal of Chemistry, **35(3)**, 567–579.

- Bandaranayake, W. M, Banfield, J. E., Black, D. S. C., Fallon, G. D. and Gatehouse, B. M. (1980) Endiandric Acid, a novel carboxylic acid from *Endiandra Introrsa* (Lauraceae): X-ray structure determination. *Chemical communications*, 4, 162–163.
- Davis, R. A., Caroll, A. R., Duffy, S., Avery, V. M., Guymer, G. P., Forster, P. I. and Quinn, R. J. (2007) Endiandrin A, a potent glucocorticoid receptor binder isolated from the Australian Plant *Endiandra anthropophagorum. Journal of Natural Products*, **70**(7), 1118–1121.
- Rohan, D. A., Emma, C. B., James, L., Vicky, M. A. and Peter, C. H. (2009) Isolation, structure elucidation and cytotoxic evaluation of Endiandrin B from the Australian Rainforest Plant *Endiandra anthropophagorum*. *Bioorganic Medicinal Chemistry*, **17(3)**, 1387–1392.
- Leverrier, A., Awang, K., Guéritte, F. and Litaudon, M. (2011) Pentacyclic polyketides from *Endiandra kingiana* as inhibitors of the Bcl-XL/ Bak interaction. Phytochemistry, **72**, 1443–1452.
- Leverrier, A., Tran, H. D. M. E, Retailleau, P., Awang, K., Guéritte, F. and Litaudon, M. (2010) Kingianin A: A new natural pentacyclic compound from *Endiandra kingiana*. Organic Letters, 12(16), 3638–3641.
- Azmi, M. N., Saad, N. A., Bakar, M. H. A, Omar, M. T. C., Aziz, A. N., Wahab, H. A., Siddiq, S., Choundary, M. I., Litaudon, M. and Awang, K. (2021) Cyclic polyketides with α-glucosidase inhibitory activity from *Endiandra kingiana* Gamble and molecular docking study. *Records* of *Natural Products*, **15**(5), 414–419.
- Azmi, M. N., Péresse, T., Remeur, C., Chan, G., Roussi, F., Litaudon, M. and Awang, K. (2016) Kingianins O–Q: Pentacyclic polyketides from *Endiandra kingiana* as inhibitor of Mcl-1/Bid interaction. *Fitoterapia*, **109**, 190–195.
- Azmi, M. N., Gény, C., Leverrier, A., Litaudon, M., Dumontet, V., Birlirakis, N., Guéritte, F., Leong, K. H., Halim, S. N. A, Mohamad, K. and Awang, K. (2014) Kingianic Acids A-G, endiandric acid analogues from *Endiandra kingiana*. *Molecules*. **19(2)**, 1732–1747.
- Banfield, J. E., Black, D. S., Collins, D. J., Hyland, B. P. M., Lee, J. J. and Pranowo, S. R. (1994) Constituents of some species of *Beilschmiedia* and *Endiandra* (Lauraceae): new endiandric acid and benzopyran derivatives isolated from *B. Oligandra. Australian Journal*

Mini review on Cyclic Polyketides from *Beilschmiedia* and *Endiandra* Species (Lauraceae): Chemical Structures, Biological Activities and Biosynthesis

of Chemistry, 47(4), 587-607.

- 18. Eder, C., Kogler, H. and Haag-Richter, S. (2004) United State Patent US2004/0138313A1.
- Chouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Wansi, J. D., Neumann, B., Stammler, H. G., Kimbu, S. F. and Sewald, N. (2011) Beilschmiedic Acids F and G, further endiandric acid derivatives from *Beilschmiedia anacardioides*. *Helvetica Chimica Acta*, 94(6), 1071–1076.
- Chouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Devkota, K. P., Neumann, B., Stammler, H. G., Kimbu, S. F. and Sewald, N. (2009) Antibacterial endiandric acid derivatives from *Beilschmiedia anacardioides. Phytochemistry*, 70(5), 684–688.
- Chouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Wansi, J. D., Kimbu, S. F. and Sewald, N. (2010) Endiandric Acid derivatives from the stem bark of *Beilschmiedia anacardioides*. *Phytochemistry Letters*. 3(1), 13–16.
- Talontsi, F. M., Lamshöft, M., Bauer, J. O., Razakarivony, A. A., Andriamihaja, B., Strohmann, C. and Spiteller, M. (2013) Antibacterial and antiplasmodial constituents of *Beilschmiedia cryptocaryoides*. *Journal of Natural Products*, **76**, 97–102.
- 23. Yang, P. S., Cheng, M. J., Peng, C. F., Chen, J. J. and Chen, I. S. (2009) Endiandric acid analogues from the roots of *Beilschmiedia Erythrophloia*. *Journal of Natural Products*, **72(1)**, 53–58.
- Huang, Y. T., Chang, H. S., Wang, G. J., Cheng, M. J., Chen, C. H., Yang, Y. J. and Chen, I. S. (2011) Anti-inflammatory endiandric acid analogues from the roots of *Beilschmiedia tsangii*. Journal of Natural Products, 74(9), 1875–1880.
- Yang, P. S., Cheng, M. J., Chen, J. and Chen, I. S. (2008) Two new endiandric acid analogs, a new benzopyran, and a new benzenoid from the root of *Beilschmiedia erythrophloia*. *Helvetica Chimica Acta*, 91(11), 2130–2138.
- Huang, Y. T., Chang, H. S., Wang, G. J., Lin, C. H. and Chen, I. S. (2012) Secondary metabolites from the roots of *Beilschmiedia tsangii* and their anti-inflammatory activities. *International Journal* of *Molecular Sciences*, 13(12), 16430–16443.
- Williams, R. B., Martin, S. M., Hu, J. F., Norman, V. L., Goering, M. G., Loss, S., Neil-Johnson, M. O., Eldridge, G. R. and Starks, C. M. (2012) Cytotoxic and antibacterial beilschmiedic acids from a Gabonese Species of *Beilschmiedia*. *Journal of Natural Products*, **75**(7), 1319–1325.

- 189 Nur Amirah Saad, Mohamad Nurul Azmi and Pinus Jumaryatno
- Apel, C., Gény, C., Dumontet, V., Birlirakis, N., Roussi, F., Pham, V. C., Doan Thi Mai, H., Nguyen, V. H., Chau, V. M. and Litaudon, M. (2014) Endiandric acid analogues from *Beilschmiedia ferruginea* as dual inhibitors of Bcl-XL/Bak and Mcl-1/Bid interactions. *Journal* of Natural Products, **77(6)**, 1430–1437.
- Qian, J., Voorbach, M. J., Huth, J. R., Coen, M. L., Zhang, H., Ng, S. C., Comess, K. M., Petros, A. M., Rosenberg, S. H., Warrior, U. and Burns, D. J. (2004) Discovery of novel inhibitors of Bcl-XL using multiple high-throughput screening platforms. *Analytical Biochemistry*, 328(2), 131–138.
- 30. Hanson, J. R. (2003) Natural products: the secondary metabolites. The Royal Society of Chemistry.
- 31. Stanforth, S. P. (2006) Natural product chemistry at a glance. Blackwell Publishing Ltd.
- 32. Staunton, J. and Weissman, K. J. (2001) Polyketide biosynthesis: a millennium review. *Natural Product Reports*, **18**, 380-416.
- 33. Scott, R. B. and Agnes, M. R. (2007) A plethora of polyketides: structures, biological activities, and enzymes. *Polyketides ACS Symposium Series*, **955**, 2-14.
- Lenta, B., Chouna, J., Nkeng-Efouet, P. A. and Sewald, N. (2015) Endiandric acid derivatives and other constituents of plants from the genera *Beilschmiedia* and *Endiandra* (Lauraceae). *Biomolecules* 5(2), 910–942.
- Bandaranayake, W. M., Banfield, J. E. and Black, D. S. C. (1980) Postulated electrocyclic reactions leading to endiandric acid and related natural products. *Chemical Communication*. 19, 902– 903.
- Banfield, J. E., Black, D. S. C., Fallon, G. D. and Gatehouse, B. M. (1983) Constituents of *Endiandra* species. V. 2-[3',5'-dioxo-4'-phenyl-10'-{(*E,E*)-5''-phenyl-penta-2'',4''-dien-1''-yl}-2',4',6' triazatetracyclo[5,4,2,02,6,08,11] tridec12' -en-9'-yl]-acetic acid derived from *Endiandra introrsa* (Lauraceae). *Australian Journal of Chemistry*, **36(3)**, 627-632.
- Banfield, J. E., Black, D. S. C, Johns, S. R. and Willing, R. I. (1982) Constituents of *Endiandra* species. IV. Isolation of 2-(8'-[(*E*,*E*)-5'-phenyl penta-2',4''-dien-1''-yl]bicyclo[4,2,0]octa-2',4'dien-7'-yl]acetic acid, a biogenetically predicted

metabolite of Endiandra introrsa (Lauraceae) and its structure determination by means of 1D and 2D NMR spectroscopy. *Australian Journal of Chemistry*, **35**(11), 2247-2256.

- Burnley, J., Ralph, M., Sharma, P. and Moses, J. E. (2011) Biomimetic electrocyclization reactions toward polyketide-derived natural products. *Biomimetic organic synthesis, Wiley-VCH Verlag*, 591-635.
- 39. Gravel, E. and Poupon, E. (2008) Biogenesis and biomimetic chemistry: Can complex natural products be assembled spontaneously? *European Journal of Organic Chemistry*, **6-6**.
- 40. Gravel, E. and Poupon, E., (2008) Biogenesis and biomimetic chemistry: Can complex natural products be assembled spontaneously? *European Journal of Organic Chemistry*, **27-42**.
- 41. Nicolaou, K. C. and Petasis, N. A. (1984) Strategies and tactics in organic synthesis (Vol 1), Academic Press.
- 42. Nicolaou, K. C., Petasis, N. A., Zipkin, R. E. and Uenishi, J. (1982) The endiandric acid cascade. Electrocyclizations in organic synthesis. I. Stepwise, stereocontrolled total synthesis of Endiandric acids A and B. *Journal American Chemical Society*, **104(20)**, 5555–5557.
- Sharma, P., Ritson, D. J., Burnley, J. and Moses, J. E. (2011) A synthetic approach to kingianin A based on biosynthetic speculation. *Chemical Communication*, 47, 10605-10607.
- 44. Lim, H. N. and Parker, K. A. (2013) Total synthesis of kingianin A. *Organic Letters*, 15, 398-401.
- 45. Lim, H. N. and Parker, K. A. (2014) Intermolecular radical cation Diels-Alder (RCDA) reaction of bicyclooctadienes: biomimetic formal total synthesis of kingianin A and total syntheses of kingianins D, F, H, and J. *Journal of Organic Chemistry*, 79, 919-926.
- Drew, S. L., Lawrence, A. L. and Sherburn, M. S. (2013) Total synthesis of kingianins A, D, and F. *Angewandte Chemie*, *52*, 4221-4224.
- Moore, J. C., Davies, E. S., Walsh, D. A., Sharma, P. and Moses, J. E. (2014) Formal synthesis of kingianin A based upon a novel electrochemically-induced radical cation Diels– Alder Reaction. *Chemical Communication*, 50(83), 12523–12525.