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Objective: To investigate mitochondrial dysfunction and pattern of expression of B-cell 

lymphoma 2 (Bcl-2) and correlate these with cardiovascular diseases (CVD) in type 2 diabetes 

mellitus (T2DM).  

 

Background: Diabetes mellitus (DM) raises the risk of CVD, which contributes significantly to 

the high mortality rates associated with the disease. The role of mitochondrial dysfunction and 

apoptosis in the development of CVD has been suggested, however the mechanisms involved 

are unknown. 

 

Methods: Type 2 diabetic mellitus patients with atherosclerosis (T2DM + ATHER, n=40), 

T2DM patients (n=40) and a control group of age-matched non-diabetic individuals (n=35) were 

enrolled in this study. Blood samples were collected and analysed for the presence of anti-

apoptotic-related factors, Bcl-2 in Peripheral mononuclear cells by qPCR as well as 

mitochondrial dysfunction by immunofluorescence analysis. Serum TNF-α and antioxidant 

enzymes (SOD) were measured by ELISA.  

 

Result: Bcl-2 expression was significantly decreased in patients with T2DM + ATHER and 

T2DM (P < 0.05) compared to the control group. MitoSpy Red staining revealed nuclear 

condensation and fragmentation in T2DM + ATHER and T2DM. There was a significant 

increase in pro-inflammatory cytokine TNF-α while the levels of SOD were significantly 

decreased in the T2DM + ATHER and T2DM patient group (P<0.05) compared to the control 

group. 

 

Conclusion: These results suggest that mitochondrial dysfunction was associated with oxidative 

stress and inflammation in patients with T2DM +ATHER. 
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Diabetes mellitus is major risk factor for the 

development of cardiovascular diseases (CVD) 

principally atherosclerosis. Previous evidence 

suggests that myocardial metabolism is altered in 

diabetes, which likely contributes to the 

development of cardiac dysfunction (1). 

Mitochondrial dysfunction and increased reactive 

oxygen species (ROS) generation are significantly 

related to diabetic heart damage. Mitochondria are 

regarded as the house of cellular energy and the 

center of metabolism in the heart. Recently, studies 

reported that any damage in the mitochondria can 

impair cellular function and has been linked with 

pathogenesis of diabetic cardiomyopathy (2). 

 

Different mechanisms have been described 

to control mitochondrial quality, including 

mitochondrial fission and fusion, mitophagy and 

biogenesis. Therefore, a failure of these 

mechanisms indicates mitochondrial damage, 

which has been observed in the hearts of diabetic 

patients (3). Oxidative stress-mediated myocardial 

injury is a consequence of an imbalance between 

free radical generation and elimination. 

Overproduction of ROS and impairment of 

mitochondrial dynamics result in mitochondrial 

dysfunction which may cause the development of 

several cardiac diseases (4). Moreover, oxidative 

stress stimulates the expression of several pro- 

 

inflammatory cytokines like Interleukin (IL)-1 and 

tumour necrosis factor (TNF)-α, which is in turn 

associated with mitochondrial dysfunction (5, 6). 
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Apoptosis in human hearts is associated with 

pathological conditions including acute myocardial 

infarction (7, 8), complete heart block (9) 

atherosclerosis (10), restenosis (11) and end-stage 

hypertrophic cardiomyopathy (12). Apoptosis is 

programmed cell death, a complex process that is 

triggered by mitochondrial and endoplasmic 

reticulum–stress responses and oxidative stress. 

Apoptotic signalling can occur via two pathways, 

extrinsic or intrinsic (the mitochondrial-dependent 

pathway) (13). Different mediators are involved in 

these pathways, which are classified as apoptotic or 

antiapoptotic factors. The B-cell lymphoma 2 (Bcl-

2) is a family of proteins consisting of anti- and 

proapoptotic members, and the Bcl-2 

protooncogene inhibits apoptosis (14, 15). 

 

This study aimed to investigate a possible 

relationship between mitochondrial dysfunction 

and the expression of Bcl-2 to investigate possible 

biochemical mechanisms in diabetic patients with 

cardiovascular disease. 

 

MATERIALS AND METHODS 

 

Subjects: 40 patients with type 2 diabetes mellitus 

and atherosclerosis (T2DM + ATHER, N = 40), 40 

individuals with Type 2 diabetes mellitus (n=40), 

and 35 individuals (n=35) with no clinically 

diagnosed atherosclerosis and no diabetes mellitus 

(the control group), were included in this study. 

Outpatient cardiology and vascular surgery 

practices were used to recruit patients with clinical 

atherosclerotic cardiovascular disease. The 

criterion for diabetes mellitus is fasting blood 

glucose levels >126 mg/dL, while coronary artery 

disease is defined as angiography or a documented 

history of myocardial infarction. All subjects signed 

a written informed consent form, and all study 

methods were approved by the Ethical Committee 

of the Diwaniyah Teaching Hospital and the 

University of Al- Qadisiyah (Al-Diwaniyah, Iraq). 

 

Methods 

 

All the groups underwent a full clinical history, 

examination, and CVD study. Venous blood 

samples (5 mL) were obtained from the patients and 

the control group and divided into parts: One 

component was centrifuged (Kokusan centrifuge, 

Germany) at 3000 RPM for 10 minutes to extract 

plasma, which was then stored in closed plastic 

tubes at -20 °C until analysis. Glucose was 

measured with a commercial kit, while TNF-α and 

superoxide dismutase (SOD) levels in the plasma 

were measured by ELISA (Elabscience, China). 

Peripheral blood mononuclear cells were isolated 

from the second part of the blood by differential 

centrifugation. 

 

For the isolation of lymphocytes and 

monocytes, venous blood was collected into 

density gradient solution tubes and spun at 3000 

rpm for 30 minutes at room temperature. Cell 

layers were removed, pelleted, and kept at 80 °C 

until qPCR measurements of Bcl-2 expression 

were performed. Total RNAminiprep kit 

(Favorgen biotech, Taiwan) was used, cDNA 

was synthesized and qPCR for Bcl2 was used for 

analysis. The resulting cDNA was mixed with 

specific primers (forward primer: 

TGGATGACTTGAGTACCTGAAC, reverse 

primer: ACAGCCAGGAGAAATCAAAC), and 

Bright Green master mix (Abm, Canada). For the 

housekeeping gene, a-actin was used. 

 

Mitochondrial dysfunction was measured by 

fluorescence microscope using MitoSpy staining. 

For analysis of mitochondrial dysfunction, 

peripheral monocytes were stained with MitoSpy 

Red that localized to the mitochondria based on its 

membrane potential (BioLegend, UK). 

 

Statistical Analysis 

 

Data are expressed as mean ± SEM. Statistical 

analysis was carried out using SPSS, the significant 

differences between groups were determined by 

using one way ANOVAs. The probability of (P < 

0.05) was considered significant. 

 

RESULTS 

 

Clinical and Biochemical Characteristics of 

Study Groups:  

 

The patients’ characteristics and clinical parameters 

are shown in Table 1. In terms of age, gender, and 

BMI, no significant differences were detected 

between the patient groups and the control group (p 

> 0.05). Compared with the T2DM patients and the 

control, fasting blood sugar (FBS), systolic blood 

pressure (SBP), triglycerides (TG), total cholesterol 

(TC) and low density lipoprotein cholesterol (LDL-

c) levels were higher in the T2DM + ATHER group 

(P< 0.05), which also had lower high density 

cholesterol (HDL-c) levels. These results indicate 

that atherosclerosis was initiated and developed by 

risk factors such as obesity, dyslipidaemia and 

hypertension.
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Table 1. Patients’ characteristics and clinical parameters 

 

Parameter 
T2DM + ATHER 

Mean ±SEM 

T2DM 

Mean ±SEM 

Control 

Mean ±SEM 
P-value 

Age (year) 55.7± 3.2 54.23± 4.5 54.4±2.2 P >0.05 

BMI 25.2 ± 3.8 24± 3.1 23.5± 4.2 P >0.05 

Systolic BP(mmHg) 145.02±16.03 * 138.02±14.15 * 126.55±13.22 P˂ 0.05 

Diastolic BP(mmHg) 82.3±5.6 81.3±2.4 80.1±3.2 P>0.05 

Total cholesterol mg/dl) 234.63 ± 44.23* 195.03 ± 55.48* 112.16 ± 23.31 P˂ 0.01 

Triglycerides (mg/dl) 278.3 ±81.31* 204.9 ± 64.25* 115.5 ±21.22 P˂ 0.01 

HDL-c (mg/dl) 40.9±1.2* 42.5±1.7* 48.6±2.2 P˂ 0.05 

LDL-c (mg/dl) 154.46±6.3* 145.95±11.03* 120.12±13.2 P˂ 0.01 

FBS (mg/dl) 265.3 ±61.40* 213.12±71.15* 94.56 ± 9.28 P˂ 0.01 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Morphological changes associated with mitochondrial dysfunction in T2DM + ATHER, T2DM, and 

control groups 

 

 

Mitochondrial DNA Damage  

 

MitoSpy Red staining indicated nuclear 

condensation and fragmentation associated with 

apoptosis in dispersed cells from the T2DM + 

ATHER and T2DM groups compared to the 

control group, with lower mitochondrial masses 

and apoptotic bodies (Fig .1).  

 

 

 

Mitochondrial DNA Damage with 

Inflammatory Cytokines 

 

TNF-α serum levels were significantly increased 

in the patient groups compared to the control 

group (P value < 0.05), as shown in Fig. 2. This 

increase was related to high levels of 

mitochondrial dysfunction.  
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As a marker of oxidative stress, serum 

SOD activity was significantly decreased in the 

T2DM + ATHER and T2DM groups compared 

to the control (𝑃 < 0.05, Fig. 3). qPCR data 

analysis showed that the expression of anti-

apoptotic Bcl-2 was significantly decreased in 

the patient groups compared to the control group 

(p<0.05, Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. TNF-levels in plasma from T2DM + ATHER, T2DM, and control patients. *indicates significant 

differences relative to the control group, # indicates significant differences between patient groups (P 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SOD levels in plasma patients with T2DM + ATHER, T2DM, and control groups. Data are expressed 

as mean ± SEM, *indicates statistically significant differences relative to the control group (P ≤ 0.05). 
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DISCUSSION 

 

The present study characterized mitochondrial 

dysfunction and its association with inflammation and 

apoptosis from diabetic patients with and without 

CVD. The levels of TG, TC and LDL-c were 

significantly increased in T2DM + ATHR, while 

HDL-c levels were relatively lower compared to the 

control group (Table 1). Consistent with these results, 

previous studies have recorded that dyslipidaemia was 

higher in T2DM patients compared to healthy 

subjects. The mechanism explaining dyslipidaemia in 

the pathogenesis of T2DM is β-cell dysfunction and 

increased fatty acid influx secondary to insulin 

resistance (15). The major findings of this study were 

that there was an increase in mitochondrial 

dysfunction in subjects with a clinical diagnosis of 

atherosclerosis, and that oxygen and nutrients should 

be supplied to the tissues. As a result, the human heart 

must constantly pump blood, resulting in a loss of 

energy, even when at rest (16). Because the 

mitochondria provide most of this energy and are 

necessary for proper heart function, cardiovascular 

illnesses are linked to mitochondrial malfunction (17). 

 

In a healthy heart, mitochondrial bioenergetic 

function plays a key role. Defective mitochondrial 

proteins, oxidative damage, and altered signalling 

pathways are all associated with heart failure, 

resulting in inadequate energy production in the 

myocardium (18). In addition, disease associated with 

mitochondrial dysfunction affects the heart (19). 

Atherosclerosis is a chronic inflammatory disorder of 

the arteries. Cellular responses to inflammation and 

injury involve TNF-α as a key player. In the 

cardiovascular system, activation of signal 

transduction pathways by TNF-α may contribute to 

vascular dysfunction, the development and 

progression of atherosclerosis, myocardial infarction 

and heart failure. The present study investigated the 

levels of TNF-α in patients with T2DM and 

atherosclerosis. Increased plasma levels of TNF-α 

were observed in all patient groups compared to the 

control (Fig. 2). Several mechanisms have been 

identified by recent studies in which TNF-α may 

promote atherogenesis including endothelial adhesion 

molecule expression (20), activation of macrophages 

(21), stimulation of smooth muscle cell (SMC) 

proliferation and migration (22) as well as induction 

of apoptosis (23). SOD levels were measured in the 

present study. Low levels of SOD were found in 

patients with type 2 DM and atherosclerosis, which 

indicated high oxidative stress (24). Previous studies 

in patients with CAD indicated that plasma levels of 

oxidized LDL (25), malondialdehyde (26), and 

advanced oxidation protein products (27) were 

significantly higher in those with CAD compared to 

those without. Enzymatic catalysis and enzyme-

mediated ROS generation have been linked to 

impaired mitochondrial respiration and ATP 

synthesis, as well as the development of a variety of 

illnesses, including diabetes and heart failure (28, 

29,30, 31). 

Oxidative stress has been shown as one of the 

stimuli for an increased level of mitochondrial fusion 

(32, 33). Mitochondria fuse when their integrity is 

impaired, isolating faulty mtDNA gene products from 

healthy neighbouring mitochondria (34). An 

accumulation of mutations and damage to mtDNA has 

been described in patients with CAD (35) and in 

animal models of myocardial infarction, due to its 

closeness and vulnerability to mitochondrial ROS 

(36). In support of these findings, investigations have 

also shown that cellular stressors such as cardiac 

ischemia cause greater mitochondrial fission (37). 

 

Altering the calcium handling dynamics of the 

cell is one way that Bcl-2 could influence 

mitochondrial function and cell survival. By altering 

either the mitochondria or the endoplasmic reticulum, 

Bcl-2 and family members Bax and Bak have been 

found to modify cellular reactivity to Ca2+ (38). 

Mitochondria use Ca2+ released from the 

endoplasmic reticulum to buffer the cytosolic Ca2+ 

level. In cultured neurons, Bcl-2 can boost the Ca2+ 

buffering capacity of mitochondria from neurons (39) 

and cardiomyocytes (40), as well as prevent cell death 

caused by Ca2+ (41). 

 

Studies are being conducted to discover 

whether mitochondrial dysfunction causes 

atherogenesis or if mitochondrial dysfunctions are 

reactions to atherosclerosis, as this is currently 

unknown (42). Recently, it was discovered that 

overexpression of Bcl-2 reduced cardiomyocyte death 

in myocardial ischemia models, an inherited type of 

cardiomyopathy that was significantly improved. 

Although the significance of Bcl-2 family members in 

human heart failure is unknown, it is known that both 

Bcl-2 and Bax are expressed at high levels in failing 

human hearts (43). Because the Bcl-2 family has the 

capacity to affect heart conditions such as ischemia, 

calcium dysregulation, and increased oxidative stress, 

it is clear that members of the Bcl-2 family are 

promising therapies for a variety of cardiac illnesses. 

 

CONCLUSIONS 

 

The evidence that mitochondrial damage/dysfunction 

occurs in both normal aging and atherosclerosis is 

growing. Mitochondrial failure can lead to an increase 

in ROS production and calcium dysregulation. 

Apoptosis and senescence, two important processes in 

the development of susceptible atherosclerotic 

plaques, are aided by these consequences. 

Mitochondrial dysfunction has important metabolic 

consequences, and its systemic manifestations may 

contribute to the development of atherosclerosis. 

Mitochondrial injury and malfunction are thus 

therapeutic targets for drug development or lifestyle 

changes. 
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