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Chemical bath deposition (CBD) was used to prepare FeSxOy films on fluorine-tin-oxide 

(FTO)-coated glass substrate. The deposition temperature and time were fixed to 75°C and 3 

hours, respectively. In previous works, high concentration of tartaric acid (≥50 mM) led to 

improvement of the properties of the deposited films [1-2]. However, there is no work reported 

on CBD of FeSxOy with tartaric acid (C4H6O6) as the complexing agent. Thus, 50 mM tartaric 

acid was selected and introduced into the deposition solution containing 100 mM Na2S2O3 and 

30 mM FeSO4. The pH of the solution with the complexing agent was adjusted close to the pH 

without the agent (~pH 5.1) using ammonia solution. Both deposited films were crystalline and 

showed n-type photoresponse. The deposition with tartaric acid resulted in film thickness 

reduction and contained less iron and larger oxygen and sulfur contents. In addition, the film 

with 50 mM tartaric acid also showed better homogeneity, improved crystallinity, larger optical 

transmittance and less hematite peaks. The role of tartaric acid can be explained by considering 

the suppression of elemental Fe deposition and enhancement of sulfur reduction. 
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Owing to high optical absorption coefficient (α > 105 

cm-1 for λ ≤ 700 nm) [3-4] and suitable band gap (Eg 

= 0.95 eV), FeS2 could be a potential candidate as an 

absorber layer in thin film solar cells [5]. In addition, 

the material extraction cost of FeS2 only requires 2 × 

10-6 ¢/W [6], thus results in the highest rank with 

regard to the material availability among 23 existing 

semiconductor material systems that potentially leads 

to remarkably lower costs than silicon. Its cost 

effectiveness could be demonstrated as 4% efficiency 

of FeS2 cell is equivalent to 20% efficiency of single's 

crystalline silicon solar [6]. Furthermore, it can exist 

in n, p and i-type photoresponse [2, 7-10], as well as 

both direct and indirect transition [11-13], depending 

on the film composition or impurity (oxygen) 

inclusion.  

 

Various methods are used to deposit FeS2 thin 

films, including chemical bath deposition (CBD) [14-

16], electrochemical deposition (ECD) [17-18], spray 

pyrolysis [12], sulfurization of iron films [19-21], sol-

gel deposition [22] and others. Among these, CBD 

offers the non-vacuum process, economic, capable of 

large scale deposition and easy control of the 

deposition parameters. 

 

The role of complexing agents is basically to 

improve aqueous solution/electrolyte stability, 

produce sufficient adherence and smooth 

microstructure. Currently, various complexing agents 

can be obtained from the market such as tartaric acid 

(C4H6O6), triethanolamine-TEA (C6H15NO3), 

ammonia (NH3), lactic acid (CH3CH(OH)COOH), 

sodium tartrate (C4H4O6Na2) and ethylenediamine-

tetraacetic (acid-EDTA[CH2N(CH2COOH)2]2). In 

CBD method, Kassim et al. [16] found that the 

increase in sodium tartrate concentration (0.1-0.3 M) 

led to reduction of FeS peaks, decreased absorbance 

and decreased number of grains. Vedavathi et al. [15] 

discovered that the FeS2 films deposited with the 

complexing agents of 0.1 M ethylenediamine-

tetraacetic (acid-EDTA) and 10-14 M ammonia were 

crystalline, and with those 14 M ammonia, pure pyrite 

phase with better surface morphology and lower film 

resistivity was obtained. In ECD method, the presence 

of tartaric acid increased the thickness and reduced 

oxygen concentration for the deposited FeSxOy films 

[2]. Meanwhile, in successive ionic layer adsorption 

and reaction (SILAR) method, Manikandan et al. [23] 

claimed that the triethanolamine presence in the 

precursor solution resulted in hexagonal shape of the 

crystalline structure in FeS2 films.  
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Nonetheless, there is no such work reported on 

CBD of FeSxOy with tartaric acid as the complexing 

agent. Thus, the role of tartaric acid on film properties 

was investigated in this work. Previously, high 

concentration of tartaric acid (≥50 mM) led to the 

improvement of the properties of the deposited films 

[1-2]. Therefore, FeSxOy films deposited without the 

complexing agent were set as the control films, and the 

effects of 50 mM tartaric acid were studied 

structurally, morphologically and optically.  
 

EXPERIMENTAL 
 

CBD was performed at 75 °C for 3 hours. Fluorine-

tin-oxide (FTO)-coated glass substrate with resistivity 

of 7 Ω/cm2 was used to deposit FeSxOy films. The 

deposition area was set to 1 cm × 1 cm by masking on 

the FTO surface. Prior to each deposition, the sub-

strate was cleaned using alkyl benzene and acetone, 

and rinsed with deionized (DI) water. A basic aqueous 

solution containing 100 mM Na2S2O3 and 30 mM 

FeSO4 was used to prepare the control film, and 50 

mM tartaric acid as the complexing agent was added 

to a similar basic solution to prepare the test films. In 

our previous cyclic voltammetery (CV) measurement 

[2], larger negative current was obtained when 50 mM 

tartaric acid was used in the deposition solution. As a 

result, the properties of the deposited films were 

improved. Despite a different deposition technique 

used (electrochemical deposition-ECD), we believe 

that a similar concentration of tartaric acid would also 

result in significant effects in our CBD of FeSxOy 

films. The pH of the solution with tartaric acid was 

adjusted similar to the solution for the control films 

(about pH 5.1) using ammonia solution, and a 

magnetic stirrer at 100 RPM was used for both 

depositions. After CBD process was completed, the 

films were dried using a dryer and kept in a vacuum box. 
 

Surface  morphology,  compositional  and 

 

thickness (via cross-sectional estimation) were 

analysed using Scanning Electron Microscope (SEM) 

S-3400N (Hitachi) equipped with Energy Dispersive 

X-ray (EDX) at a probe voltage of 15 kV. X-ray 

diffraction (XRD) patterns were recorded by 

SmartLab X-ray diffractometer (Rigaku) using a 

CuKα radiation source. The value of 2θ was set in the 

range of 20-60°. Crystallite size for the films was 

estimated using a Scherrer equation [24-25]: 
 

d =  
kλ

β cos θ
                                                (1) 

 

d = average crystallite size- in nm 

k = dimensionless shape factor (typical value is about 

0.94) 

λ = x-ray wavelength (typical value for CuKα is about 

0.154056 nm) 

β = line broadening at half the maximum intensity (full 

width at half maximum-FWHM)- in radians 

θ = Bragg angle or peak position- in radians 
 

Raman spectra were obtained by LabRAM HR 

Evolution (HORIBA Scientific) using 633 nm red 

laser as excitation source. During measurements, the 

Raman shifts were set from 100-700 cm-1 and two 

different areas were scanned (both areas resulted in 

similar Raman peaks). Optical transmittance of the 

films was measured in the range of 350-950 nm using 

UV-1800 UV-Vis double beam spectrophotometer 

(Shimadzu Scientific Instruments Inc.). A con-

ventional hot probe method was used to determine the 

photoresponse, whereby a couple of hot and cold 

probes were attached to the deposited films. The hot 

probe was connected to the positive terminal of the 

multimeter while the cold probe was connected to the 

negative terminal. For p-type photoresponse, the 

pointer in the multimeter (under voltage mode) will 

deflect in negative direction, and vice versa for n-type 

photoresponse [26-27].  
 

 

 
 

Figure 1. XRD patterns for the measured films. 
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RESULTS AND DISCUSSION 

 

Figure 1 shows the XRD patterns for the deposited 

films and FTO substrate. All of the peaks were 

compared with JCPDS 1309-37-1 (hexagonal 

hematite-αFe2O3), JCPDS 42-1340 (cubic pyrite-

FeS2) and JCPDS 29-0713 (orthorhombic geothite-

αFeOOH). There was no peak observed for FTO 

substrate, while for FeSxOy film (0 mM tartaric acid) 

it yielded an additional hematite peak at 2θ = 36.36°. 

On the other side, the peaks for the film with tartaric 

acid (2θ = 33.81, 36.86, 51.61°) seemed to be sharper 

(small peak width of FWHM) than those peaks 

observed in FeSxOy. XRD peak's width can be related 

to crystallite grain size using a Scherrer equation [24-

25]. Average crystallite size is inversely proportional 

to the peak width of FWHM. Thus, qualitatively small 

peak width (β), as shown in Figure 1, indicates better 

crystallinity (larger crystallite grain size). That 

qualitative statement was verified quantitatively, 

whereby the average crystallite size for FeSxOy and the 

50 mM tartaric acid films was estimated in the ranges 

of 9.4-14.9 nm and 14-14.9 nm, respectively.     

 

Figure 2 illustrates Raman spectra for both the 

films and FTO substrate. All the peaks are attributed 

to the deposited films. In previous works, Raman 

peaks were reported as follows: Fe1-xS: 152, 292, 354 

cm-1 [28]; hematite: 217, 285, 397 cm-1 [29-30]; 

FeSxOy: 249, 305 cm-1 [31]; and geothite: 298, 397, 

414, 474, 550 cm-1 [32]. For the measured films, the 

peaks were as follows: FeSxOy (0 mM tartaric acid): 

217, 248, 284, 395 cm-1; and 50 mM tartaric acid: 151, 

220, 474 cm-1. FeSxOy peak only appeared in the 

control film (0 mM tartaric acid) while for the films 

with tartaric acid, Fe1-xS and geothite were obtained 

with less number of hematite peaks.  

 

The thickness of the control film and the films 

with 50 mM tartaric acid were about 5 µm and 0.4 µm, 

respectively. Figure 3 depicts the surface morphology 

for the deposited films. Both the films consisted of 

inhomogeneous agglomerate formed from various 

grain size occurring on the surface. Compared to 

Figure 3(a), the film with 50 mM tartaric acid resulted 

in larger, dense and uniform agglomeration grains 

with more well defined boundaries. 

 

 
 

Figure 2. Raman spectra for the measured films and FTO. 
 

 

 
 

Figure 3. SEM images for the deposited films: (a) FeSxOy and (b) 50 mM tartaric acid. 
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Figure 4. Optical transmittance for the deposited films. 

 

 

 
 

Figure 5. (αh)2 vs. h for the film deposited with 50 mM tartaric acid. 

 

 

Table 1. Elemental composition. 

 

Film Iron-Fe (weight %) Sulfur-S (weight %) Oxygen-O (weight %) 

FeSxOy 51.96 11.18 36.86 

50 mM tartaric acid 10.22 32.23 57.55 

 

 

The optical transmittance for both the films is 

shown in Figure 4. Higher transmittance is observed 

for the film with 50 mM tartaric acid. Since the 

thickness of the film is much smaller than the control 

FeSxOy film, the enhanced transmittance will be 

mainly due to the reduced thickness.  

 
Clear optical transition slope was found for the 

film with 50 mM tartaric acid, and thus the direct band 

gap was estimated by the plot of (αh)2 vs. h, where 

α is the absorption coefficient and h is the photon 

energy. The plot is shown in Figure 5 and 

extrapolation of the linear part would intersect x-axis 

at approximately 3.2 eV.  

 
We further investigated the elemental 

composition for both the films using EDX and the 

results are listed in Table 1. The addition of 50 mM 

tartaric acid into the deposition solution caused in 

remarkably reduced Fe content and increased S and O 

contents. 
 

The transformation of pyrite to hematite is a 
complicated process, and may proceed by different 
mechanisms under different conditions. Pyrite will be 
oxidized to form a series of final products, such as 
hematite (Fe2O3), magnetite (Fe3O4), geothite 
(αFeOOH), iron (ferric or ferrous) sulfate (Fe2(SO4)3, 
FeSO4) and sulfur dioxide (SO2) [33-35]. The 
transformation process and the formation of these 
products are influenced by the reaction conditions, 
such as temperature, oxygen concentration, flow 
conditions and particle size [33]. Generally, the 
transformation of pyrite to hematite occurred in the 
sequence of [33-35]: 

 
Pyrite (FeS2) → Pyrohotite (Fe1−xS) → FeS → FeSO → FeO → Geothite →  Fe2O3    (2)  
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On the other hand, the use of complexing 

agents in the deposition solution is common and it is 

expected that they will form complexes with metal 

ions and hinder the formation of precipitation (e.g., 

metal hydroxide) or other spontaneous reactions. In 

this work, the film deposited with 50 mM tartaric acid 

resulted in significant iron reduction and higher 

oxygen and sulfur contents. Oxygen was probably 

included in the film initially as Fe(OH)2 and then 

decomposed into iron oxide [2]. With 50 mM tartaric 

acid, free Fe2+/Fe3+ ions concentration in the solution 

was decreased due to the formation of some complex 

iron species, and consequently suppressed the 

formation of Fe(OH)2. Similar phenomena were also 

observed in previous works [36-37] regarding to the 

retardation of metal deposition rate for tin (Sn) and 

iron (Fe) based films. Despite higher oxygen content 

obtained for the films with 50 mM tartaric acid as 

shown in Table 1, the complexing agent delayed the 

transformation of geothite to hematite (Figures 1 and 

2), or in other words reduced hematite formation. The 

transformation of geothite to hematite could be 

described by the reaction of: 

  

Fe(OH)3 → FeO(OH) +  H2O                         (3)  

                                          

2FeO(OH) → Fe2O3 +  H2O                           (4)  

 

Thus, tartaric acid is considered to suppress the 

formation of iron oxide. On the other hand, tartaric 

acid seems to accelerates sulfur reduction in CBD of 

FeSxOy films. This trend was similar with previous 

works conducted [1-2, 36]. In addition, the film 

uniformity was enhanced with tartaric acid presence, 

whereby larger agglomerate size with uniform surface 

morphology observed in Figure 3(b).  

 

The film deposited with 50 mM tartaric acid 

showed higher transmittance, sharper XRD peaks and 

less hematite formation than the control film. 

According to the Raman spectra in Figure 2, our 

deposited film with tartaric acid contained Fe1-xS, 

geothite and hematite. Based on the transformation 

sequence in (2), the transformation of FeSxOy to 

hematite was delayed. Since tartaric acid promotes 

sulfur reduction and simultaneously suppresses the 

formation of Fe(OH)2, therefore, the delayed stage 

was observed with the presence of Fe1-xS and geothite 

peaks in 50 mM tartaric acid film as depicted in Figure 

2. This is probably the reason for the missing peaks as 

compared to the film without tartaric acid presence. 

Previously, the band gaps of Fe1-xS, geothite 

(αFeOOH) and hematite (αFe2O3) were reported to be 

0.2 eV [3, 5], 2.5-3.1 eV [38] and 1.87 eV [39], 

respectively. Based on the plot of (αh)2 vs. h in 

Figure 5, the direct band gap of the film with tartaric 

acid is around 3.2 eV. This large band gap value is 

possibly due to the inclusion of a significant amount 

of oxygen. Similar findings were also reported 

regarding to band gap widening of FeS2 film with 

oxygen inclusions [40]. This is due to the replacement 

of sulfur anions with smaller oxygen anions which 

reduces the average hopping integral within the S 

ppσ* orbital network. Since the oxygen 2p orbitals are 

smaller than sulfur 3p orbitals, oxygen anions would 

act as pinch points in the S ppσ* network and thereby 

reduce its bandwidth, widening the band gap. Both of 

the deposited films exhibited n-type photoresponse 

with high transmission in the visible range, therefore 

they are suitable as window layers in solar cells 

application. 

 

CONCLUSIONS 

 

FeSxOy thin films have been prepared on FTO-

coated glass substrate via CBD at 75°C for 3 hours 

from an aqueous solution containing Na2S2O3 and 

FeSO4 with controlled pH, and the effects of 50 mM 

tartaric acid were studied. With the addition of tartaric 

acid, the film thickness was significantly reduced, 

sulfur reduction was favoured and hematite formation 

was reduced. Better film uniformity and crystallinity 

were obtained for the film with 50 mM tartaric acid. 

Both films were crystalline and indicated n-type 

conductivity behaviour. The role of 50 mM tartaric 

acid in FeSxOy film can be explained by considering 

the retardation of Fe(OH)2 via Fe suppression in which 

consequently delayed hematite formation.  
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