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In this paper the calculation of intermolecular interaction energy based on Gavezzotti–Filippini
semi-empirical method was performed for the series of α, ω-diols. The initial structural data were
retrieved from the Cambridge Structural Database. For each structure, the critical coordination
number and the molecular coordination number were calculated. The interrelationship between the
coordination numbers and the local regularity of a crystal was also discussed.
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Up to the moment, the most powerful retrieval tool
for structural data of organic compounds is
Cambridge Structural Database, CSD [1]. Statistics
based on CSD has multiple applications: crystal
structure prediction, prediction of polymorphs,
crystal engineering, a quantitative estimation of
intermolecular interactions, justification of phase
transitions, an insight into prospective material
properties etc. The database was established in 1965
and initially contained published results on structure
determination by X-ray and neutron diffraction for
compounds having at list one ‘organic’ carbon atom.
After that, this ambiguous criterion was moderated,
and nowadays CSD contains, for instance, carbonyl
complexes M(CO)n of transition metals. Since
1990th, an unpublished data, if satisfied specific
requirements to the reliability, is also acceptable by
CSD. According to estimates [2], the capacity of the
Cambridge Database may reach a million of crystal
structures in a few years. Each item is attributed by a
refcode of 6 letters and, optionally, two numbers (for
multiple determinations of the same crystal structure
and polymorphs). The same crystalline compound
studied by different teams and deposited
independently may get different refcodes due to a
fault of entering checking.

Developing the theory of dense molecular
packing, Kitaigorodskii [3] has introduced the
concept of molecular coordination number (MCN)
defined several neighboring molecules having at least
one van der Waals contact with the considered one.
In organic crystals without structure-forming specific
interactions (like H-bonds), MCN most often accepts
value 12 or 14 [4]. However, determination of
contacting molecules is based on sums of van der
Waals radii that may deviate with actual
intermolecular distances within 5% even for
equivalent pairs of elements in the same crystal [3]. It
induces some ambiguity into molecular coordination

shells since various values of radii can lead to
multiple coordination numbers.

Long ago it was shown that the periodicity of
a crystal is caused by the identical local environment
of structural units [5]. For this purpose, a so-called
Delone system, or (r, R)-system, was introduced: a
system of points, such that the vicinity of radius r (r-
vicinity) of any point does not contain other points,
and R-vicinity of any point contains at least one other
point of the system. The strict criteria of local
arrangement resulting in the periodicity are still being
developed. It has been proven that the 2-dimensional
(r, R)-system has 2D periodicity if all its points have
identical environment in the vicinity of radius 4R [6].
In the same work, it was supposed that the criterion
of a 3D crystal is the identity of environments in the
sphere of radius 6R. Recently, Dolbilin has found out
[7] that the limit of correctness for a 3D crystal is
most likely equal to 10R. However, if the system is
centrosymmetric (so-called locally antipodal set) and
the centres of inversion are located in each point of
the system, this boundary is reduced to 2R.

In molecular crystals, the energy of
intermolecular interaction is vital for the
characteristics of molecular coordination along with
MCN, as the energy of different contacts may differ
strongly. In 1972, Zorky and Zefirov suggested [8]
that impacts of pairwise non-bonded intermolecular
interactions into total energy of a molecular crystal
would have a gap at the last close intermolecular
contact. Many years later, this proposition was tested
by Grineva for series of α,ω-diols [9]. The energetic
coordination number (NE) was calculated as several
intermolecular contacts for which the difference in
energy with the strongest contact did not exceed 3%.
Taking into account symmetric equivalence of some
contacts, the NE value in that series of structures
appeared to be 1, 2, 4 or 8.
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Recently, Motherwell [10] also addressed an
ambiguity of the purely geometrical definition of
MCN suggesting a criterion for relative decrease in
energy of intermolecular contacts. Using the random
set of 1000 crystal structures from CSD, he searched
for a relative drop of energy from i-th to (i+1)-th
contact being not less than 40%. The calculated
MCN values were 14 in about 45% of structures, 12
in about 13% of structures, and MCN = 10, 13 and 16
were shared by 5-10% structures. However, only in
35% of structures, the first drop 40% of energy
turned out to be at i = MCN. This hints that not all
contacts in MCN but just a fraction of them may
define a molecular environment.

In [11] there was introduced the concept of
the critical coordination number (CCN), the least
number of symmetrically unique intermolecular
contacts sufficient for formation of a given crystal. It
was also shown that in homomolecular crystals in
which molecules occupy one general orbit (Z′ = 1)
min(CCN) equals the cardinality of the minimal set
of generators for the space group, the last one
accepting values from 2 to 6 inclusive. However,
generally CCN is not limited to these values, and in
[12] we demonstrated examples of crystal structures
with CCN = 1, i.e. generated by repetition of one
unique contact. The most surprising examples of
these structures belonging to the space group Fdd2, Z
= 8, are dimethylsulphate (CSD refcode
VEGNAX01) generated by equivalent interactions of
Me…O=S (H…O 2.4 Å), dichlorofluoromethane
(SOPYUR) with a framework of short interactions
Cl…F 3.1 Å, and several others. However, the
strongest set of intermolecular contacts not necessary
corresponds to the set of generators of a space group,
i.e., CCN > min(CCN). That is, in the series of
structures of substituted prolines [13] one of the
strongest intermolecular contacts typically could not
be included in any minimal set of generators of the
space group.

The objective of the article was to find out
whether there is some parsimony principle for CCN
to prefer a minimal possible value, and to investigate
the interrelationship between MCN, CCN, and R.

METHOD

The series of crystal structures of α, ω-diols,
analyzed in [9], is also very easy-to-use for CCN
assessment: first, these structures are chemically
relative, second, they are homomolecular with Z′ = 1
(similar molecules occupy the same position of a
space group), and third, their intermolecular
interactions are reasonably diverse (there are H-
bonds together with ordinary van del Waals
interactions). From 33 structures of the specified
series, we analyzed 28, having excluded identical
structures with a greater diffraction R-factor since
small differences in geometrical parameters were not
essential for CCN. Crystal structures of the same
space group in different settings were treated as

belonging to the same group. For instance, P21/c,
P21/a, and P21/n were uniformly marked as P21/c.

The computation of interaction energy was
performed in mercury software [14] with the use of
Gavezzotti–Filippini 6–exp potential [15]. In this
approach, the potential of intermolecular interaction
U for a pair of molecules is the sum of all interatomic
potentials between these molecules. Intramolecular
interactions were neglected. For the chart energies
U1, U2, … U200 of 200 strongest contacts were
summarized; the residual contacts commonly share
much less than 1% of the lattice energy UΣ. Thus, U1

+ U2 +…+ U200 ≈ UΣ. For the reason that NE in these
structures did not exceed 3 (not considering
symmetrically equivalent contacts), we thoroughly
analyzed only the first 6 strongest unique contacts.

Assessment of MCN was also carried out in
mercury using Molecular Shell utility which allows
to visualizing a molecular coordination shell in the
confined interval of distances either around a
molecule, or around its fragment. As a criterion of
inclusion of each following molecule in the
calculation of MCN we used the deviation of
interatomic distances from the sum of Bondi’s [16]
van der Waals radii (ΣRvdW). The lower bound of an
appropriate interval of interatomic distances was set
to (ΣRvdW – 1,0 Å) in order not to miss any of the
shortened interactions, in particular between
hydrogen atoms. The upper bound (ΣRvdW + δ), δ = 0;
0.1; 0.2;... Å was set individually for each crystal
structure. We found out that if the coordination
sphere did not increase for two following values of δ
in a row, then it would not also increase for the
following values until the new coordination sphere at
a significantly greater distance was not reached. This
allowed considering triple repetition of coordination
number at different δ pointing to the true MCN value.

Each intermolecular contact corresponds to
some symmetry operation. Combining these
operations, one can obtain a minimal generator set of
the space group. This is a minimal set of interactions
to form the crystal structure. Although there can be
different minimal sets for any space group, we
selected the 'best' one in the following manner.
Assuming that such minimal set of interactions
contained contacts with the highest energy, we
selected such a minimal set of interactions that its 1st
strong interaction was the strongest among all sets. If
it did not lead to a definite set, we selected a set
where 2nd strong contact is the strongest among
those in other sets, etc.

RESULTS AND DISCUSSION

Each structure was characterized by its min(CCN)
value. In particular, space group P212121 had the
minimal set of two generating elements, namely, two
mutually perpendicular screw axes 21 closest to each
other. The third 21 axis, perpendicular to the former
two, as well as the coordinate translations, were
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generated. Since this group did not have special
positions, the homomolecular crystal with Z′ = 1 of a
given space group could belong only to the structural
class with min(CCN) = 2. The space groups P21,
P21/c (as well as P21/a and P21/n) and C2/c had three
generating element. For instance, the group P21/c in
β-setting could be generated by translation X together
with any pair of the following three elements: 21 axis,
c plane, and the closest centre of inversion i. The
translations Y and Z then were generated. If in a
crystal of these groups a single general position was
occupied, then its min(CCN) is 3. If in a crystal of
the group P21/c or C2/c a special position i was
occupied, then min(CCN) = 2, because in these cases
the inversion centre was included in the generating
set imminently. For the C2/c group, there also existed
a structural class in which the molecules were located

on rotation axes, but this structural class was not
represented among the analyzed structures.

To find out whether a critical contact could be
detected from the drop of energy for the i-th strong
contact, we analyzed various combinations of Ui and
UΣ. Contrary to our anticipations based on the
experience of analyzing the structures of other series
(in particular, substituted prolines [13]), there was no
break in the diagram of Ui vs i for the critical contact
(the least strong contact, which was necessary for the
formation of a given structure). Also, critical contact
energies in the current series of structures had similar
values; thus their normalization by UΣ led to an
increase of standard deviation and complicated the
analysis. More informative appears to be Δi = (Ui -
Ui+1)/Ui ratio (Figure 1b).

(a)

(b)

Figure 1. The average absolute (a) and relative (b) decrease of Ui and its confidence interval (α = 0.05) for the
series of crystal structures of α, ω-diols.
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The plot in the Figure 1b shows that even with
a very large standard deviation (there were no
excluded structures), the confidence interval (α =
0.05) of the Δi value for i = CCN lays almost entirely
higher than the confidence intervals for all other
contacts. Unlike NE estimate [9], our Δi difference
was much larger than 2-3% was 40-60% for the
critical contact and 20-40% for the other contacts.
Presently, it could not be stated that the obtained
result follows precisely neither from the 'criticalness'
of the critical contact, nor from the fact that such a
contact mostly corresponds to H-bond To clarify this
point, analysis of other series of interrelated crystal
structures is required, primarily those without
specific interactions (for example, olefins).
Surprisingly, the threshold separating the energy of
the critical contact from the others is exactly the
sa me  a s  t ha t  fo u nd  b y Mo the r we l l  fo r  t he

coordination number [10]. As mentioned above, in
more than half of cases such a drop in energy was
detected not for MCN, but for some stronger contact,
which now is likely to be the critical one.

The MCN values in the considered series were
most often equal to 12 or 14 in good accordance to
general predictions [3, 4] (Table 1). The only
deviation was observed for QATTIO refcode with
symmetry P21/c, Z = 4 and MCN = 13. Noteworthy,
CCN increased with the molecular size, while a gap
between the values of CCN and MCN decreased. The
larger were molecules in the coordination sphere, the
more possibilities they had to contact with each other
varying local arrangement. It led to the emergence of
new unique contacts, even if they were not required
for initial local symmetry.

Table 1. Critical coordination numbers (CCN) and molecular coordination numbers (MCN) for the crystal
structures of α, ω-diols with n(C) carbon atoms. Initial structure data were retrieved

from CSD ver. 5.36 + 3 updates.

Space group, Z min(CCN) n(C)
CSD

refcode
CCN MCN

P212121, Z = 4 2

2 NOZKES02 2 14

5 QATTOU 2 12

7 QATVAI 3 12

9 WESTET 3 12

11 HIYHAY 3 12

13 TIQHAC 4 12

15 MATLIC 4 12

17 QIMCUK 4 12

19 ICAHID 4 12

21 XAYHOU 4 12

23 QURRUQ 4 12

C2/c, Z = 4 2

20 RIWTAT 4 12

22 RIWTEX 4 12

24 RIWTIB 4 12
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P21/c, Z = 2 2

8 QATVEM 3 14

10 WESTIX01 3 14

12 RUVWAG 3 14

14 CAVDEI 3 14

16 WERTUI 3 14

18 GURBUQ 4 14

P21, Z = 2 3

16 WERTUI01 4 12

18 GURBUQ01 4 12

20 RIWTAT01 4 12

22 RIWTEH01 4 12

24 RIWTIB01 4 12

P21/c, Z = 4 3

3 QATTEK 3 12

4 QATTIO 3 13

6 FECCOF01 5 14

From the viewpoint of Dolbilin [7], a
homomolecular crystal with Z′ = 1 can be considered
as (r, R)-system, where the points correspond to the
centres of mass of molecules, and R ≈ dmin. Crystal
structures in which molecules occupy inversion
centres are a so-called locally antipodal set in which
the same molecular environment in a sphere of radius
2R should lead to 2D periodicity.

Among the analyzed structures, the molecules
occupy inversion centres in C2/c, Z = 4 and P21/c, Z
= 2 crystals (Table 2). However, it turned out that the
critical contact never fell into the 2R-vicinity of a
molecule. In addition, the number of neighbouring
molecules in the 2R-vicinity, as a rule, did not
coincide with the MCN and could be either more or
less. The number of molecules within a sphere of
radius equal to the length of the critical contact could
be so large (>100) that the current possibilities of
mercury did not allow to find the exact value of this
number. For comparison, in Table 2 we have listed
the structures of non-centrosymmetric molecules in

the centrosymmetric P21/c group, where the critical
contact fell into the 2R-vicinity. However, limitations
for the local regularity of such structures was much
more rigorous [7].

The crystal structures considered in this article
had much in common. All of them contained
hydrophobic and hydrophilic alternating regions. Let
consider crystal structure of tetracosane-1, 24-diol
(RIWTIB). The molecule was centrosymmetric, it
had a linear conformation and was packed into
hydrophobic slabs with indexes (002). Linking the
mass centres of the neighboring molecules, one
obtained a plain fragment of the closest sphere
packing. Both sides of this fragment form H-bonded
tapes combined into plain 'sheets' with indexes (–
104). The H-link (Figure 2) in this structure played a
role of the critical contact with UCCN = 19.9 kJ/mol
and dCCN = 29.6 Å, hydrophobic binding layers,
which were very strong. The coverage parameter for
the geometric centre of the molecules in the structure
was R = 12.1 Å.

58 Alexander Banaru, Yuri L. Slovokhotov The Local Regularity of an Organic Crystal
and Dmitry Gridin



Table 2. Centro- and non-centrosymmetric molecules in crystal structures of racemic α, ω-diols. N(<d) denotes
the number of molecules in d-vicinity of a molecule.

Molecule
CSD

refcode
dmin, Å i(dmin) N(<2dmin) dCCN, Å N(<dCCN)

centro-symmetric

QATVEM 4.80 1 18 11.66 32

WESTIX01 4.94 1 10 13.85 40

RUVWAG 4.96 1 10 16.08 60

CAVDEI 4.98 1 10 18.27 72

WERTUI 4.98 1 10 20.49 86

GURRUQ 5.00 1 10 22.73 >100

RIWTAT 5.23 2 14 25.09 >100

RIWTEX 5.24 2 14 27.33 >100

RIWTIB 5.24 2 14 29.57 >100

non-centro-
symmetric

QATTEK 4.07 1 21 4.65 1

QATTIO 5.01 6 30 5.30 5

FECCOF01 4.74 3 22 5.45 3

Figure 2. H-bond in the crystal structure of tetracosane-1, 24-diol (RIWTIB).

59 Alexander Banaru, Yuri L. Slovokhotov The Local Regularity of an Organic Crystal
and Dmitry Gridin



Since the molecule and its environment were
centrosymmetric, to form a crystal, it would be
enough for molecules to form identical contacts in a
sphere of radius 2R = 24.2 Å. Indeed, the structure
had intermolecular contacts that did not exceed this
distance in length and were suitable for the role of
critical ones. The corresponding molecules are shown
in Figure 3b. One of such symmetrically independent
contacts had d = 23.6 Å, the other d = 23.6 Å, but
both were not included even in the top 20 of the
strongest contacts, and the energy of each U < 0.2
kJ/mol.

Moreover, the molecules located at these
distances were shielded from the initial, respectively,
by 3 and 2 H-linked 'sheets' of molecules, so that
direct interatomic contact was out of the question
here. The critical contact, as well as the entire first
coordination sphere of the molecule in this structure,
obviously went beyond 2R. For a more detailed study

of this pattern, a new series of crystal structures was
required.

CONCLUSION

The critical coordination number (CCN) calculated in
our study, usually exceeded its minimal possible
value for a structural class. The heavier the molecule,
the larger was CCN–min(CCN) difference due to the
increasing diversity of the local molecular
environment. On the other hand, CCN was much less
than the molecular coordination number (MCN),
even if the multiplicity of contact following from its
symmetry was taken into account. The least strong
contact required for the crystal structure formation
(i.e., critical contact) had the greatest average relative
decrease of the contact energy. While equality of the
local environment within a certain vicinity of a
molecule was sufficient for the crystal structure
formation, the critical contact was generally outside
this vicinity.

(a)

(b)

Figure 3. Molecular coordination spheres (concerning the mass centres) in the crystal structure of tetracosane-1,
24-diol (RIWTIB): (a) – the 1st coordination sphere, (b) – the environment in the radius of 24.2 Å. The most

strongly bound molecules (EN) are highlighted in black, the ones included in the CCN calculation are highlighted
in gray. H-bonds are shown by a solid line, van-der-Waals contacts are shown by a dashed line.
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For a correct comparison with MCN, other
types of CN were also more convenient to consider
taking into account symmetrically equivalent
contacts. Typical values for all CNs were even. EN

and CCN reflected the number of intermolecular
contacts, respectively, in the primary (the strongest)
and secondary (less strong) agglomerates of the most
tightly bound structural units, including molecules.
Without taking into account the symmetrically
equivalent contacts, CCN was an invariant of the
structural class of the crystal. However, taking into
account those, CCN was not invariant, because the
choice of contacts generating the crystal structure
without taking into account the energies was not
unambiguous.

As a characteristic of the environment of a
molecule in a crystal CCN had certain advantages.
First, it took into account the nature of intermolecular
interactions, in contrast to the MCN, and not only
their topology. Secondly, the MCN had a less wide
spread of values than the CCN, taking into account
symmetrically equivalent contacts, and therefore was
less sensitive to the local features of the crystal
structure, as well as to the size and shape of
molecules.
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