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This study aimed to determine if chemometric techniques could be employed to 

identify the environmental sources contributing to metals exposure in non-

occupationally exposed pregnant women living in Western Australia at 

background levels. Total metals (Al, Cd, Co, Cu, Pb, Mn, Hg, Ni, Se, U, V, Zn) 

concentrations were determined in 119 bloods and 109 urines, and environmental 

samples (104 house dust, 103 soil and 118 drinking water) collected from homes 

of the study population. Chemometric techniques, principal component analysis 

(PCA) and partial least squares (PLS) were used to identify the number of 

potential sources, and assess the percentage contribution of source signatures to 

the metal loadings in maternal blood and urine. Chemometric techniques were 

applied to the data generated from elemental analysis of blood, urine, drinking 

water, soil and dust samples to develop the signature. The use of PCA and PLS in 

establishing source signature using a suite of metals indicated that a mixed 

environmental source of metals contributed to the concentrations in maternal 

blood. Drinking water, soil and dust were identified as potential sources of metals 

in blood but not in urine.  PLS analysis using the environmental data as the 

signature indicated 70-95% of the variance in the blood could be explained by the 

environmental signature for most blood samples. 
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Human exposure to metals is traditionally 

assessed through monitoring metal concentrations 

in biological media such as blood and urine. 

However, this approach does not necessarily 

provide information about the source or route 

of exposure [1]. In order to identify the source 

of exposure, an understanding of the possible 

sources contributing to the exposure and the 

types of metal contaminants emitted from a 

potential source is required. Soil, dust, and 

water being ubiquitous are the most likely 

sources of metals exposure to human and this 

is supported by a number of studies [2-7]. 

However, the majority of these studies 

focussed on lead and high exposure 

concentrations in children. Studies to identify 

contributions from specific environmental 

sources to personal exposure, particularly at 

low levels, are limited. In studies, where this 

has been undertaken [6, 8-10], the task was 

often accomplished using isotopic analysis, 

which requires high-resolution instrumentation 

[10-12].  

 

A conventional approach to determining 

source is to determine the metal concentrations 

in both biological and environmental samples, 

and a correlation is carried out for each metal 

independently to determine if there is an 

association. A more advanced method is to use 

regression analysis to identify relationships 

between a dependent variable and a set of 

independent variables [13]. Regression 

analysis is the commonly accepted approach in 
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ma n y  e n v i r o n me n t a l  s c i e n c e s  a n d  

epidemiological studies [6, 14-16] because it is 

often fairly robust and can be undertaken on 

smaller data sets; however, a major drawback 

is that it works under the law of probability. As 

a consequence, there is the possibility for 

relationships to go unnoticed in complicated 

environmental systems, especially when the 

metal concentrations dealt with are low [13]. 

An advanced multivariate statistical approach 

such as those employed in chemometrics may 

be required for the handling of such data [17].  

 

Chemometric techniques use mathematical 

and statistical approaches, which are optimised 

and integrated into a user-friendly computational 

package to design experiments and provide 

maximum chemical information. This feature 

is employed in this study to enable the 

chemometric tools to distinguish the environ-

mental sources and identify the metal pollutants 

(markers) that are characteristic of the 

biological samples, which can be accomplished 

by developing signatures. The use of the 

chemometric approach, which uses a finger-

printing concept, has been used successfully in 

the fields of environmental chemistry (e.g. oil 

spill identification and investigation of the fate 

of petroleum hydrocarbons) and environmental 

forensics [18, 19]. A general advantage of this 

approach over classical interpretation is the 

relative simplicity by which relationships 

between multiple variables (e.g. chemical 

concentrations) and samples can be determined 

and visualised using scores and loadings plots 

[18]. It makes interpretation easier and focuses 

attention on relationships that might go un-

noticed when using traditional techniques such 

as regression analysis [13]. 

  

While the methods utilised to identify 

the sources of metals via chemometrics are 

many, principal component analysis (PCA) 

[13, 17, 20-22] and partial least squares (PLS) 

[19, 23-27] appear to be the common choices 

for many environmental investigations, 

principally due to their suitability in 

identifying the relationships between samples 

and the developing sources signature.  

 

PCA is mainly used for pattern 

recognition and exploratory data analysis 

purposes. It is a fundamental approach of 

projection for other multivariate techniques as 

well [28]. PCA is an unsupervised technique 

that does not require input from the user on 

sample groupings. It is designed to achieve a 

new set of usually orthogonally arranged and 

uncorrelated reference variables or principal 

components by transforming the original data 

to smaller dimensions [17, 26, 28, 29]. Conversely, 

PLS is a supervised technique and is often 

known as “projections to latent structures” 

[28]. It is a special form of the more common 

multiple linear regression, which generalizes 

and combines the features of PCA and 

ordinary least square regression. PLS allows 

for the prediction of dependent variables (Y) 

from a large set of independent variables (X), 

or in other words, it allows the determination 

of the relationship between the two sets (X and 

Y) of variables.  While PCA can be used to 

identify how many source types are present in 

a dataset, PLS can be used to explain the 

variance among the investigated variables and 

to assist in quantifying any one source is in a 

sample [19, 26].   

 

A study involving human exposure 

assessment [30] enabled the determination of 

the significance of various factors including 

environmental (drinking water, soil and house 

dust) metal concentrations to measured bio-

logical metal concentrations. The analysis 

determined the statistical association between a 

single element in a biological matrix and these 

factors, but the contribution from each source 

could not be assessed because of the non-

significant relationships [13, 30]. Either no 

correlation or weak correlation was observed 

between environmental metal concentrations 

and maternal biological metal concentrations 

in general and is likely due to the low recorded 

metal concentrations, which was indeed 

expected, making it difficult to identify relation-

ships. The chemometric approach is expected 

to resolve this issue as source recognition is 

possible by the development of source signatures 

using several metal variables [25, 27, 31, 32]. 

  

The aim of this study was to employ 

PCA and PLS analysis on blood, soil, dust and 

drinking water samples. PCA was undertaken 

on environmental and blood samples to 

determine the possible origins of the metals 

found in maternal blood, whereas PLS was 

used to quantify the contribution made by the 

identified potential sources to the total metal 

content of the blood samples. 
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MATERIALS AND METHODS 

 

Sample Collection  

 

Biological (blood and urine) were obtained 

from a subset of participants of the ‘Australian 

Maternal Exposure to Toxic Substances’  

(AMETS) study [30]. The participants were 

non-occupationally exposed pregnant women 

living in coastal, rural and urban areas of 

Western Australia. Participants were asked to 

complete a self-administered questionnaire and 

to provide a sample of drinking water, house 

dust and a composite surface soil sample taken 

from outside their home. Ethics approval was 

obtained for this study from Edith Cowan 

University Human Research Ethics Committee, 

WA Country Health Service, St John of God 

Health Care (Subiaco and Bunbury), Joondalup 

Health Campus and King Edward Memorial 

Hospital [33, 34]. All participants provided 

written informed consent. 

 

Sample Preparation 

 

In total, 119 blood, 109 urine, 118 drinking 

water, 103 soil, and 104 dust samples were 

available for analysis.  

 

Digestion of blood (1.0 ml) was under-

taken with high purity concentrated nitric acid 

(HNO3) (1.0 ml) (Merck) and hydrochloric 

acid (HCl) (0.40 ml) (Australian Chemical 

Reagents) using a 1000 W microwave digester 

(Milestone Ethos Touch Control Microwave, 

supplied by Milestone, Italy) set according to 

the European Standard (EN) 1380:2002. The 

digest was diluted to 10.0 ml with milli-Q 

(>18MOhm) water. Urine samples were diluted 

(1.0 ml + 9.0 ml) with a diluent solution 

containing 1% HNO3 and 0.5% HCl for analysis 

of common metals. For mercury analysis, the 

urines were diluted (1.0 ml + 9.0 ml) with a 

diluent solution containing 1% HNO3, 1% HCl 

and 1 mg/L gold (Au) [30]. Creatinine analysis 

was prepared using the Jaffe Reaction method 

[35]. The urine analyses were corrected for 

their creatinine content, as per the procedure. 

The water samples were acidified with 

concentrated HNO3 and analysed directly. Soil 

and dust samples were air-dried and passed 

through sieves, 1000 µm and 600 µm respectively 

before to analysis, and digested following 

USEPA SW 846 test method 3050B [36]. Soil 

and dust samples of equal dry weight were 

weighed out and digested in a mixture of 

HNO3, hydrogen peroxide (Rowe Scientific) 

and HCl in open beakers using a hot plate. The 

digested samples were cooled, filtered and 

diluted to a final volume of 100.0 ml with 

milli-Q water.  

 

Instrumentation 

 

The prepared blood, urine and drinking water 

solutions were analysed using Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) 

(Agilent 7500cs-Octopole Reaction Cell, 

Agilent Technologies, USA). Analysis of 

creatinine was completed using a discrete 

analyser (Labmedics/ Thermo Fisher Aquakem 

250). The analysis of soil and dust digests were 

performed with a Varian Vista Pro Inductively 

Coupled Atomic Emission Spectroscopy (ICP-

AES) (Varian Analytical Instruments Australia). 

 

Data Analysis  

 

The data of biological and environmental 

samples were explored by developing PCA and 

PLS models using the statistical package 

SIMCA-P + 12.0 from Umetrics (version 9) 

[37]. Twelve elements were included: 

aluminium (Al), cadmium (Cd), cobalt (Co), 

copper (Cu), lead (Pb), manganese (Mn), 

mercury (Hg), nickel (Ni), selenium (Se), 

uranium (U), vanadium (V) and zinc (Zn). 

PCA was used to analyse the dataset to 

determine the number of potential sources of 

the maternal metals, followed by projections to 

latent structures by means of PLS to determine 

how much of the variability in the Y block 

(biological data) could be explained or  

predicted from a signature in the X block 

(environmental data) [25].  PLS performs PCA 

on the source sample (drinking water, soil or 

dust) data, defined as the signature that is 

expected to contain metal contaminants and be 

responsible for metals exposure. The 

projections will allow the quantification of the 

amount of variance in Y block that is explained 

by each X block signature [25]. A high 

percentage of variance illustrates a strong fit or 

similar signature between the X and Y blocks, 

and poor fit if the variance is small [25]. An 

overview of the PCA and PLS mechanisms 

concerning source identification can be found 

in [25].  

 

Prior to analysis, the raw metal 

concentrations data were converted into 

proportion, and then log-ratio transformation 
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was conducted. This was undertaken to obtain 

normally distributed data, enabling better 

separation and interpretation of data, while 

eliminating any concentration effect, if present 

[19]. The data were then standardized, which 

involves centering and scaling of the variables. 

The standardization is critical as it avoids the 

PCA being dominated by higher concentration 

range elements [25, 38]. During this stage, the 

variable averages are subtracted and divided by 

their standard deviation. By doing so, the 

variables are mean centered, and have a unit 

variance standardised to zero, giving equal 

importance to all components [19]. 

 

RESULTS 

 

Principal Component Analysis  

 

The concentrations of the investigated metals 

in the environmental and biological samples 

were relatively low, as reported in [30]. In 

general, maternal blood and urine had low 

metal concentrations, mostly within the 

previously reported literature ranges for similar 

populations. Drinking water and soil metal 

concentrations were below the relevant 

Australian and World Health Organisation 

(WHO) guidelines [39-41], while the dust 

metals concentrations were consistent with 

other findings from similar environmental 

settings. This was not surprising as the study 

dealt with a non-exposed population in a 

residential setting.  

PCA was performed separately on both 

the elemental data of blood and environmental 

samples, and the elemental data of urine and 

environmental samples to determine if a 

pattern or correlation exists between the 

environmental and biological samples. Blood 

samples were observed grouped together and 

separated from environmental samples, with 

drinking water spread out in the middle (Figure 

1). Many of the soil and dust samples were 

observed overlapping with each other 

suggesting that soil and dust may have similar 

chemical compositions attributable to their 

common origin. However, the soil and dust 

samples appeared to be isolated from blood 

samples indicating soil and dust samples may 

not have a similar elemental data pattern to the 

blood samples. The influence of a specific 

metal to the groupings of the samples is 

explained using the loadings plots (Figure 2). 

From the plots, there was evidence that the 

scores of the majority of soil and dust samples 

were influenced by elevated aluminium, lead, 

manganese, vanadium and uranium compositions, 

while elevated copper, selenium and zinc 

content might explain the blood scores. 

 

Identification of sources at low metal 

concentrations can be very challenging and 

difficult. In order to establish a signature, 

choosing  the correct suite of metals associated 

with source sample identification is critical. 

Therefore, it was decided to exclude non- 

diagnostic variables in the consecutive  

 

 

 
 

Figure 1. Scores plot for the elemental data of blood and environmental samples [blood (B) 

                 is red; drinking water (W) is orange; soil (S) is blue; and dust (D) is green]. 
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Figure 2. Loadings plot for the elemental data of blood and environmental samples. 

 

analyses as their removal was anticipated to 

produce  a  better  separation  between sources. 

Given that copper, selenium and zinc are 

essential to humans and can be found naturally 

in the human body [42-45] their presence 

prevents the establishment of any correlation 

between the biological and environmental 

factors and thus were removed. Most blood and 

drinking water samples were found grouped 

indicating that they may have a similar pattern 

and thus, similar signatures (Figure 3). 

However, a blood sample with code A056B was 

found deviated from the normal grouping of 

samples (Figure 3), towards the right of the plot. 

The raw blood and questionnaire data of the 

particular woman was investigated to search any 

unusual behaviour, but no probable reason could 

be identified. Some water samples were seen 

separated from the blood samples as well, 

indicating they may not be relevant for source 

identification, and thus, participants with these 

sample codes were excluded during the defining 

of signatures in subsequent PLS analysis [25].  
 

 

 
 

Figure 3. Scores plot for the elemental data of blood and drinking water  

                 samples [blood (B) is red; drinking water (W) is green]. 
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Exclusion of aluminium, copper,  

selenium, and zinc yielded a model which 

exhibited a clearer relationship between blood 

and soil and dust samples (Figure 4). No 

definite explanation could be established for 

this observation, but an analysis of raw 

concentration data showed that aluminium was 

detected at elevated concentrations in soil and 

dust in general. This finding was in line with 

several other studies [46, 47]. This suggests 

that it is likely that the soil and dust sample 

loadings are mainly dominated by aluminium 

composition, which separated them from the 

blood samples. The overlapping of many soils 

and dust samples in Figure 4 may indicate the 

commonality between them. However, it 

should be noted that these associations do not 

necessarily represent a cause and effect [48, 

49]. 

 

A PCA plot of urine and environmental 

samples shows that urine samples also isolated 

from the clustering of soils and dust, with 

drinking water samples spread out in between 

the two groups.  Features that were apparent in 

the plots (data not shown) indicated that 

copper concentrations heavily influenced 

drinking water samples copper concentrations; 

soil    and    dust    towards    aluminium,   lead, 

 

manganese, vanadium and uranium; and urine 

towards cadmium, selenium, and nickel. 

Although it seemed that there was no 

correlation between the urine and environ-

mental samples, several attempts were again 

made to identify a possible source by removing 

non-diagnostic variables including copper, 

selenium, and zinc for the same reasons 

mentioned previously. However, no association 

could be established, with urine samples 

continuing to separate from the environmental 

samples. As PCA showed no association 

between the urine and environmental samples, 

the conclusion was that it would not be 

possible to define signatures through PLS 

analysis. This finding suggests two main 

possibilities. Either the source contributing to 

the exposure in urine is outside the matrices 

examined in this study e.g. food or the metals 

exposure is not reflected sufficiently in urine. 

Furthermore, blood, in general, is a better 

marker of exposure than urine, especially for 

assessing short-term exposure for many metals, 

with exceptions being nickel and uranium [50-

52]. This is supported by the findings reported 

in [30], where more factors were found 

associated with blood metals in general when 

compared with urinary metals. 

  
 

 

 
Figure 4. Scores plot for the elemental data of blood and soil and dust samples 

                [blood (B) is red; soil (S) is blue; dust (D) is green]. 
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It is worth mentioning that instead of 

using all the elements to provide a signature, it 

is relevant to use those that have shown to be 

distinct in the loadings plot [27] and judgement 

from the aspect of theoretical knowledge is also 

important. For example, some metals such as 

copper can be naturally found in biological and 

environmental samples, and thus provide a 

naturally elevated background, which may not 

be useful in the identification of the potential 

sources or determining the signature. The use of 

such metals to determine the signature can be 

erratic. In general, when copper, selenium, and 

zinc were removed from the data set, the overlap 

between the blood and environmental samples 

increased. Also, clearer association was seen 

between blood and soil and dust samples, with 

the removal of aluminium. This supports the 

importance of using the relevant element to 

provide the signature.  However, care needs to 

be exercised when choosing the elements, as a 

decrease in selectivity or total explained 

variance is possible [23, 25]. This explicates the 

reason for not excluding the variables observed 

close to the origin in loadings plot, although 

they seemed to have little effect. 

 

Partial Least Squares 

 

Preliminary investigation of PCA 

indicated  that  drinking  water, soil, and dust are 

possible sources of metals in the blood. 

Consequently, the reduced dataset was utilised 

to develop a signature using a suite of metals 

identified earlier in the appropriate sections to 

see how much variance of each source signature 

can be predicted in blood in general. Partial least 

squares model of blood and drinking water 

samples was built using aluminium, cadmium, 

cobalt, lead, manganese, mercury, nickel, 

vanadium and uranium. PLS analysis showed 

that approximately 73% of the blood samples 

had 60-100% of the variance predicted by the 

drinking water signature (Figure 5). A few 

women (~18%), however, showed poor 

matching of this signature with the predicted 

variance between 10-40%, indicating that apart 

from drinking water, other factors might be 

relevant. The loadings diagram (Figure 6) has 

aluminium and manganese in the positive 

quadrant and cadmium, cobalt, mercury, nickel 

and vanadium in the negative quadrant. Metals 

on opposite sides of the graph behave inversely, 

so as one increase, the other decreases. For 

example, when the concentration of manganese 

increases, the concentration of cadmium 

decreases. Sometimes they may even be 

mutually exclusive. For instance, in the presence 

of manganese, cadmium is absent. Lead is close 

to the origin, indicating it has little influence in 

the signature [23].  

 

  

 

 

 
Figure 5. Predicted variance, Q

2 
(blue) in blood using drinking water as the signature. 
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Figure 6. Loadings on the first principal component (t [1]) explains 70% of the variance in the  

            drinking water signature and 30% in the blood, u [1]. 
 

 

The PLS model of blood and soil 

samples built using cadmium, cobalt, lead, 

manganese, mercury, nickel, vanadium and 

uranium showed that over 50% of blood samples 

had more than 60% of the variability predicted 

by soil signature (Figure 7). About 35% of 

samples had 90% of the variability predicted by 

soil  signature.  A  few  women (~27%) had 

relatively poor fit (<40%). The loadings diagram 

(Figure 8) shows lead and manganese in the 

positive quadrant, while cadmium, copper, 

mercury, and uranium are in the negative 

quadrant. Nickel and vanadium are near to 

origin and so are likely to have little effect on 

that PC. 

 

 

 
 

Figure 7. Predicted variance, Q
2 
(blue) in blood using soil as the signature. 
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Figure 8. Loadings on the first principal component (t [1]) explains 76% of the variance in the soil 

   signature and 54.7% in the blood, u [1]. 
 

 

The majority (~80%) of blood samples 

had 70% of the cadmium, cobalt, lead, 

manganese, mercury, nickel, vanadium and 

uranium variability predicted by dust the 

signature (Figure 9). Figure 10 shows a slightly 

better relationship between the loadings on PC1 

from the X block (dust, t[1]) and those for the Y 

block (blood, u[1]) when compared with the 

data presented in Figures 8 and 6. Cadmium, 

cobalt, mercury, vanadium, and uranium were 

found negatively loaded to lead, manganese and 

nickel. As before, nickel was found close to the 

 

 

origin  indicating that it may have little effect on  

the signature. 
 

The amount of variance explained in the 

signature by the first PC is greater in soil (76%), 

followed by drinking water (70%) and finally 

dust (65%), indicating a greater degree of 

variability in the dust signature. The use of 

drinking water, soil, and dust as individual X-

block signatures for blood metals dataset from 

Western Australian participants resulted in a 

wide variety of fits and the results are summarised 

 

 

 
 

Figure 9. Predicted variance, Q
2 
(blue) in blood using dust as the signature. 
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Table 1. Percentage of each predicted variance category by potential sources. 

 

Explained variance Drinking water (%) Soil (%) Dust (%) 

0.0 – 0.2 0.8 13.4 0.8 

0.2 – 0.4 17.1 13.4 6.0 

0.4 – 0.6 9.4 17.5 6.8 

0.6 – 0.8 34.2 54.7 29.1 

0.8 – 1.0 38.5 1.0 57.3 

 

 

 

 
Figure 10. Loadings on the first principal component (t [1]) explains 64.8% of the variance 

           in the dust signature and 43.3% in the blood, u [1]. 
 

 

in Table 1. There were relatively clear differ-

rences between the fits. In general, the dust had 

a greater number of good fits (>60%) when 

compared with drinking water, while drinking 

water had a slightly larger number of good fits 

than soil. These data suggest that although 

drinking water, soil and dust signatures did not 

explain all the variance in blood samples when 

added together, these signatures make up the 

variance to some level, if not totally. This also 

suggests that in cases, where the total explained 

variance is poor, the main source contributing to 

exposure is outside the matrices examined here. 

A probable explanation concerning the poor fits 

obtained is that the women in this study were 

from various geographic locations with different 

environ-mental settings, so there may be the 

difference in localised sources at play depending 

on the location. The probability of being 

exposed to a direct food source is also 

suggested. It is also possible that the elements 

resulting in the variation are not included in the 

analysis. 

 

DISCUSSION 

 

Principal component analysis and PLS has 

revealed drinking water, soil, and dust as 

potential sources of metals exposure in blood. 

The fact that nickel was observed close to zero 

and uranium slightly off the regression line in 

Figures 8 and 10 suggests that their role in 

developing soil and dust signature to blood 

metals might be insignificant, indicating soil and 
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dust are less likely to be the main source 

contributing to nickel and uranium exposure in 

blood. Furthermore, in Figure 6, nickel and 

uranium were observed in the negative quadrant 

and close to the regression line. This indicates 

the nickel and uranium levels contribute to 

drinking water signature [27]. The solubility of 

nickel and uranium might be relevant here. A 

possible related explanation is that soluble 

nickel compounds are excreted rapidly through 

urine, whereas insoluble compounds of uranium 

are unlikely to enter the bloodstream, indicating 

the main component of nickel and uranium 

determined likely to be in soluble form, where 

main sources are usually diet-related factors or 

food [44, 53-55]. Based on published data [30], 

many blood samples had higher measurable 

concentrations when compared with urine 

samples. The high concentrations in blood as a 

well high percentage of samples with detectable 

levels of uranium in relative to urine suggest 

that the main component of uranium measured 

here could be in the form of soluble as insoluble 

compounds of uranium are unlikely to enter the 

bloodstream (e.g. uranium trioxide ) [44].  As 

for nickel, many urine samples were reported to 

contain nickel, while only a few blood samples 

contained nickel. Also, nickel was detected in all 

water samples and uranium in many drinking 

water samples, again reflecting to their solubility 

in the media. 

 

 Furthermore, apart from the drinking 

water source system and diet in general, there 

were no other specific factors found influencing 

nickel and uranium exposure in this population 

[30]. All this suggests that diet could be the 

main source contributing to the nickel and 

uranium exposure. The fact that no source (of 

the investigated environmental samples) 

signature could be defined from PCA of urine, 

(data not shown) though urine is a reliable 

biomarker for nickel and uranium, also supports 

the above assertion. However, as speciation 

studies were not conducted, it is difficult to 

critique the results here. 

 

No doubt, the use of several metals 

assisted in distinguishing the sources and 

provided signatures that were helpful in 

identifying the sources; however, the signatures 

were not very definitive. A likely explanation is 

that the suite of elements used might be 

inadequate and there was a lack of pure source 

materials. Pure elemental sources would not 

occur. For any one source the elements would be 

mixtures, hence multiple elements in multiple 

sources would confound any one source being 

attributed as the sole contribution. An adequate 

number of elements and source materials will 

aid in raising the total explained variance due to 

the commonality of the source compounds [25].  

 

CONCLUSION 

 

The results outline the application of the 

different methods to investigate sources of 

human exposure when concentrations were low 

and suggested that a chemometric approach 

could be useful to identify the environmental 

sources contributing to human exposure at 

background levels. The chemometric analysis of 

this data showed that drinking water, soil, and 

dust were potential sources of metals in maternal 

blood, but not in urine. 
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