Electrochemical Synthesis of a Metal Organic Framework Material Based on Copper and Benzene–1,3,5–Tricarboxylic Acid Using Applied Current


Electrochemical Synthesis of a Metal Organic Framework Material Based on Copper and Benzene–1,3,5–Tricarboxylic Acid Using Applied Current


Metal organic framework material based on copper and benzene–1,3,5–tricarboxylic acid (H3BTC) was synthesized by applying electric current method. The influences of applied current, NaNO3 concentration, synthesis time and hydrate process to molecular and phase structure, morphology and specific surface area were studied. When the parameters of electrodeposition changed, CuBTC one dimension (1D) and three dimensions (3D) could be obtained. The optimum conditions to gain CuBTC 3D were: 100 mA current, NaNO3 concentration of 0.05 M with synthesis time of 10 min. The short-time hydrate process could increase specific surface area from 79 m2/g to 617 m2/g, however, the long-time hydrate process could lead to the destruction of material structure.

Key words: Metal organic framework, CuBTC, electrodeposition, hydrate process


Yaghi, O.M., Li, G and Li, H. (1995) Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706.

Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G. and Williams, I.D. (1999) A chemically functionalizable nanoporous material, [Cu3(TMA)2(H2O)3]n, Science, 283, 1148-1150.

Tranchemontagne, D.J., Hunt, J.R. and Yaghi, O.M. (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron, 64, 8553-8557.

Wang, X., Lin, H.,   Bi, Y.,  Chen, B. and Liu, G. (2008) An unprecedented extended architecture constructed from a 2-D interpenetrating cationic coordination framework templated by SiW12O404- anion, Journal of Solid State Chemistry, 181, 556-561.

Kayaert, S., Bajpe, S.,  Masschaele, K.,  Breynaert, E., Kirschhock, C.E.A. and  Martens, J.A. (2011) Direct growth of Keggin polyoxometalates incorporated copper 1,3,5-benzenetricarboxylate metal organic framework films on a copper metal substrate, Thin Solid Films, 519, 5437–5440.

Yang, H., Orefuwa, S. and Goudy, A. (2011) Study of mechanochemical synthesis in the formation of the metal–organic framework Cu3(BTC)2 for hydrogen storage, Microporous and Mesoporous Materials, 143, 37-45.

Brown, C.M., Liu, Y. and Neumann, D.A.  (2008) Neutron powder diffraction of metal-organic frameworks for hydrogen storage, Journal of Physics, 71, 755–760.

Li, Z-Q., Qiu, L-G., Xu, T., Wu, Y., Wu, Y., Wang, W., Wu, Z-Y. and Jiang, X. (2009) Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method, Materials Letters, 63, 78-80.

Schlesinger, M.,  Schulze, S., Hietschold, M. and Mehring, M. (2010) Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)], Microporous and Mesoporous Materials 132, 121–127.

Assche, T.R.C.V. and Denayer, J.F.M. (2013) Fabrication and separation performance evaluation of a metal–organic framework based microseparator device, Chemical Engineering Science,  95, 65–72.

Campagnol, N.,  Assche, T.V.,  Boudewijns, T.,  Denayer, J.,  Binnemans, K.,  Vos, D.D.  and Fransaer, J. (2013) High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies, J. Mater. Chem. A, 1, 5827-5830.

Kumar, R.S.,  Kumar, S.S. and Kulandainathan, M.A. (2013) Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction, Microporous and Mesoporous Materials, 168, 57–64.

Hartmann, M.,  Kunz, S.,  Himsl, D., and Tangermann, O. (2008) Adsorptive separation of isobutene and isobutane on Cu3(BTC)2 , Langmuir,  24, 8634-8642.

Joaristi, M.,  Juan-Alcañiz, J.,  Serra-Crespo, P.,  Kapteijn, F. and Gascon, J. (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks, Cryst. Growth Des., 12, 3489−3498.

Ameloot, R., Stappers, L., Fransaer, J., Alaerts, L., Sels, B.F. and Vos, D.E.D. (2009) Patterned growth of metal-organic framework coatings by electrochemical synthesis, Chem. Mater., 21, 2580–2582.

Kumar, R.S., Kumar, S.S. and. Kulandainathan, M.A. (2012) Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst, Electrochemistry Communications, 25, 70–73.

Assche, T.R.C.V., Desmet, G.,  Ameloot, R.,  Vos, D.E.D.,  Terryn, H. and Denayer, J.F.M. (2012) Electrochemical synthesis of thin HKUST-1 layers on copper mesh, Microporous and Mesoporous Materials, 158, 209–213.

Gascon, J.,  Aguado, S.  and Kapteijn, F. (2008) Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on a-alumina, Microporous and Mesoporous Materials, 113, 132–138.

Mueller, U., Schubert, M., Teich, F.,  Puetter, H.,  Schierle-Arndt K. and Pastre´, J. (2006) Metal–organic frameworks—prospective industrial applications, J. Mater. Chem., 16, 626–636.

Yang, H.M.,  Song, X.L.,  Yang, T.L.,  Liang, Z.H. and Hao, X.G. (2014) Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction, RSC Adv., 4, 15720-15726.

Hartmann, M., Himsl, D., Kunz, S. and Tangermann, O. (2008) Olefin/paraffin separation over the metal organic framework material Cu3(BTC)2, Zeolites and Related Materials, 174, Part A, 615-618.

Rowsell, J.L.C. and Yaghi, O.M. (2005) Strategies for hydrogen storage in metal–organic frameworks, Angew. Chem. Int. Ed., 44, 4670–4679.

Rowsell, J.L.C. and Yaghi, O.M. (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks, J. Am. Chem. Soc., 128 (4), 1307-1315.

Llabrés i Xamena, F.X.,  Abad, A.,  Corma, A. and Garcia, H. (2007) MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF, Journal of Catalysis, 250, 294-298.

Opelt, S., Türk, S.,  Dietzsch, E.,  Henschel, A.,  Kaskel, S. and Klemm, E. (2008) Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst, Catalysis Communications, 9(6), 1286-1290.

Marx, S.,  Kleist, W. and Baiker, A. (2011) Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives, Journal of Catalysis, 281, 76–87.

Seo, Y-K., Hundal, G.,  Jang, I.T.,  Hwang, Y.K., Jun, C-H. and Chang, J-S. (2009)  Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture, Microporous and Mesoporous Materials, 119, 331-337.

Starosta, W.,  Sartowska, B.,  Łyczko, K.,  Maurin, J.,  Pawlukojć, A.,  Waliś, L. and Buczkowski, M. (2012) A method for production of nano MOF and prelimiary characterization by selected analytical techniques, Nukleonika, 57(4), 581−583.

Gascon, J., Aguado, S. and Kapteijn, F. (2008)  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on a-alumina, Microporous and Mesoporous Materials, 113, 132–138.

 Yin, J.,  Qi, L. and Wang, H. (2012) Antifreezing Ag/AgCl reference electrodes: Fabrication and applications, Journal of Electroanalytical Chemistry,  666, 25-31.

Decoste, J.B., Peterson, G.W., Smith, M.W., Stone, C.A. and Willis, C.R. (2012) Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition, Journal of the American Chemical Society, 134, 1486-1489.

back to top